login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277802
The least k > 0 such that k*A004709(n) is a cube.
2
1, 4, 9, 2, 25, 36, 49, 3, 100, 121, 18, 169, 196, 225, 289, 12, 361, 50, 441, 484, 529, 5, 676, 98, 841, 900, 961, 1089, 1156, 1225, 6, 1369, 1444, 1521, 1681, 1764, 1849, 242, 75, 2116, 2209, 7, 20, 2601, 338, 2809, 3025, 3249, 3364, 3481, 450, 3721, 3844
OFFSET
1,2
COMMENTS
This is a permutation of the cubefree numbers (A004709).
a(n) <= A004709(n)^2, with equality iff A004709(n) is squarefree. - Robert Israel, Nov 09 2016
FORMULA
a(n) = A048798(A004709(n)).
Sum_{k=1..n} a(k) ~ c * zeta(3)^3 * n^3 / 3, where c = Product_{p prime} (1 - 1/p^2 + 1/p^5 - 1/p^6) = 0.36052971192705404983... . - Amiram Eldar, Feb 20 2024
EXAMPLE
a(8) = 3 because 3 * A004709(8) = 3 * 9 = 3^3.
a(16) = 12 because A004709(16) = 18 = 2^1 * 3^2. The least k such that k * 2^1 * 3^2 is a cube is 2^(3 - (1 mod 3)) * 3^(3 - (2 mod 3)) = 12. - David A. Corneth, Nov 01 2016
MAPLE
f:= proc(n) local F, E;
F:= ifactors(n)[2];
E:= F[.., 2];
if max(E) >= 3 then return NULL fi;
mul(F[i, 1]^(3-E[i]), i=1..nops(F));
end proc:
map(f, [$1..1000]); # Robert Israel, Nov 09 2016
MATHEMATICA
Table[k = 1; While[! IntegerQ[(k #)^(1/3)], k++] &@ #[[n]]; k, {n, 53}] &@ Select[Range[10^4], FreeQ[FactorInteger@ #, {_, k_ /; k > 2}] &] (* Michael De Vlieger, Nov 01 2016, after Jan Mangaldan at A004709 *)
f[p_, e_] := If[e > 2, 0, p^(Mod[-e, 3])]; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &] (* Amiram Eldar, Feb 20 2024 *)
PROG
(PARI) \\ A list of about n terms (a little more probably).
lista(n) = {n = ceil(1.21*n); my(l=List([1]), f); forprime(p=2, n, for(i=1, #l, if(l[i] * p<=n, listput(l, l[i]*p); if(l[i]*p^2<=n, listput(l, l[i]*p^2))))); listsort(l); for(i=2, #l, f=factor(l[i]); f[, 2] = vector(#f[, 2], i, 3-(f[i, 2] % 3))~; l[i] = factorback(f)); l} \\ David A. Corneth, Nov 01 2016
(Python)
from math import prod
from sympy import mobius, factorint, integer_nthroot
def A277802(n):
def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x, 3)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return prod(p**(-e%3) for p, e in factorint(m).items()) # Chai Wah Wu, Aug 05 2024
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Peter Kagey, Oct 31 2016
STATUS
approved