login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A117855
Number of nonzero palindromes of length n (in base 3).
10
2, 2, 6, 6, 18, 18, 54, 54, 162, 162, 486, 486, 1458, 1458, 4374, 4374, 13122, 13122, 39366, 39366, 118098, 118098, 354294, 354294, 1062882, 1062882, 3188646, 3188646, 9565938, 9565938, 28697814, 28697814, 86093442, 86093442, 258280326, 258280326, 774840978
OFFSET
1,1
COMMENTS
See A225367 for the sequence that counts all base 3 palindromes, including 0 (and thus also the number of n-digit terms in A006072). -- A nonzero palindrome of length L=2k-1 or of length L=2k is determined by the first k digits, which then determine the last k digits by symmetry. Since the first digit cannot be 0, there are 2*3^(k-1) possibilities. - M. F. Hasler, May 05 2013
From Gus Wiseman, Oct 18 2023: (Start)
Also the number of subsets of {1..n} with n not the sum of two subset elements (possibly the same). For example, the a(0) = 1 through a(4) = 6 subsets are:
{} {} {} {} {}
{1} {2} {1} {1}
{2} {3}
{3} {4}
{1,3} {1,4}
{2,3} {3,4}
For subsets with no subset summing to n we have A365377.
Requiring pairs to be distinct gives A068911, complement A365544.
The complement is counted by A366131.
(End) [Edited by Peter Munn, Nov 22 2023]
FORMULA
a(n) = 2*3^floor((n-1)/2).
a(n) = 2*A108411(n-1).
From Colin Barker, Feb 15 2013: (Start)
a(n) = 3*a(n-2).
G.f.: -2*x*(x+1)/(3*x^2-1). (End)
EXAMPLE
The a(3)=6 palindromes of length 3 are: 101, 111, 121, 202, 212, and 222. - M. F. Hasler, May 05 2013
MATHEMATICA
With[{c=NestList[3#&, 2, 20]}, Riffle[c, c]] (* Harvey P. Dale, Mar 25 2018 *)
Table[Length[Select[Subsets[Range[n]], !MemberQ[Total/@Tuples[#, 2], n]&]], {n, 0, 10}] (* Gus Wiseman, Oct 18 2023 *)
PROG
(PARI) A117855(n)=2*3^((n-1)\2) \\ - M. F. Hasler, May 05 2013
(Python)
def A117855(n): return 3**(n-1>>1)<<1 # Chai Wah Wu, Oct 28 2024
CROSSREFS
Cf. A050683 and A070252.
Bisections are both A025192.
A093971/A088809/A364534 count certain types of sum-full subsets.
A108411 lists powers of 3 repeated, complement A167936.
Sequence in context: A071908 A370588 A011260 * A086442 A071407 A309094
KEYWORD
nonn,base,easy
AUTHOR
Martin Renner, May 02 2006
EXTENSIONS
More terms from Colin Barker, Feb 15 2013
STATUS
approved