

A117855


Number of nonzero palindromes of length n (in base 3).


3



2, 2, 6, 6, 18, 18, 54, 54, 162, 162, 486, 486, 1458, 1458, 4374, 4374, 13122, 13122, 39366, 39366, 118098, 118098, 354294, 354294, 1062882, 1062882, 3188646, 3188646, 9565938, 9565938, 28697814, 28697814, 86093442, 86093442, 258280326, 258280326, 774840978
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

See A225367 for the sequence that counts all base 3 palindromes, including 0 (and thus also the number of ndigit terms in A006072).  A nonzero palindrome of length L=2k1 or of length L=2k is determined by the first k digits, which then determine the last k digits by symmetry. Since the first digit cannot be 0, there are 2*3^(k1) possibilities.  M. F. Hasler, May 05 2013


LINKS

Table of n, a(n) for n=1..37.
Index entries for linear recurrences with constant coefficients, signature (0,3).


FORMULA

a(n) = 2*3^floor((n1)/2).
a(n) = 3*a(n2). G.f.: 2*x*(x+1)/(3*x^21). [Colin Barker, Feb 15 2013]


EXAMPLE

The a(3)=6 palindromes of length 3 are: 101, 111, 121, 202, 212, and 222.  M. F. Hasler, May 05 2013


MATHEMATICA

With[{c=NestList[3#&, 2, 20]}, Riffle[c, c]] (* Harvey P. Dale, Mar 25 2018 *)


PROG

(PARI) A117855(n)=2*3^((n1)\2) \\  M. F. Hasler, May 05 2013


CROSSREFS

Cf. A050683 and A070252.
Sequence in context: A257389 A071908 A011260 * A086442 A071407 A309094
Adjacent sequences: A117852 A117853 A117854 * A117856 A117857 A117858


KEYWORD

nonn,base,easy


AUTHOR

Martin Renner, May 02 2006


EXTENSIONS

More terms from Colin Barker, Feb 15 2013


STATUS

approved



