login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108411
a(n) = 3^floor(n/2). Powers of 3 repeated.
36
1, 1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467
OFFSET
0,3
COMMENTS
a(n) is the Parker sequence for the automorphism group of the limit of the class of oriented graphs; a(n) counts the finite circulant structures in that class. - N-E. Fahssi, Feb 18 2008
Complete sequence: every positive integer is the sum of members of this sequence. - Charles R Greathouse IV, Jul 19 2012
Conjecture: a(n+1) is the number of distinct subsets S of {0,1,2,...,n} such that the sumset S+S does not contain n. - Michael Chu, Oct 05 2021. Andrew Howroyd, Nov 20 2021: The conjecture is true: If there are m pairs of numbers that add to n then inclusion/exclusion gives sum(k=0, m, binomial(m,k)*(-1)^k*2^(2*m-2*k)) as the number of sets that don't contain any of those pairs which equals 3^m. For even n , n/2 cannot be included in any set.
LINKS
FORMULA
O.g.f.: (1+x)/(1-3*x^2). - R. J. Mathar, Apr 01 2008
a(n) = 3^(n/2)*((1+(-1)^n)/2+(1-(-1)^n)/(2*sqrt(3))). - Paul Barry, Nov 12 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (-1)^n*sum(A158020(n,k)*2^k, 0<=k<=n). - Philippe Deléham, Dec 01 2011
a(n) = sum(A152815(n,k)*2^k, 0<=k<=n). - Philippe Deléham, Apr 22 2013
a(n) = 3^A004526(n). - Michel Marcus, Aug 30 2014
E.g.f.: cosh(sqrt(3)*x) + sinh(sqrt(3)*x)/sqrt(3). - Stefano Spezia, Dec 31 2022
EXAMPLE
a(6) = 27; 3^floor(6/2) = 3^floor(3) = 3^3 = 27.
MAPLE
A108411:=n->3^floor(n/2); seq(A108411(k), k=0..100); # Wesley Ivan Hurt, Nov 01 2013
MATHEMATICA
Table[3^Floor[n/2], {n, 0, 100}] (* Wesley Ivan Hurt, Nov 01 2013 *)
PROG
(PARI) a(n)=3^floor(n/2);
(Magma) [3^Floor(n/2): n in [0..50]]; // Vincenzo Librandi, Aug 17 2011
(Haskell)
a108411 = (3 ^) . flip div 2 -- Reinhard Zumkeller, May 01 2014
(Python)
def A108411(n): return 3**(n>>1) # Chai Wah Wu, Oct 28 2024
CROSSREFS
Essentially the same as A056449 and A162436.
Sequence in context: A287479 A128019 A056449 * A162436 A146788 A147244
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Jun 05 2005
EXTENSIONS
Incorrect formula removed by Michel Marcus, Oct 06 2021
STATUS
approved