The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152815 Triangle T(n,k), read by rows given by [1,0,-1,0,0,0,0,0,0,...] DELTA [0,1,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. 15
 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 0, 0, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 COMMENTS Triangle read by rows, Pascal's triangle (A007318) rows repeated. Riordan array (1/(1-x), x^2/(1-x^2)). - Philippe Deléham, Feb 27 2012 LINKS Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened FORMULA T(n,k) = T(n-1,k) + ((1+(-1)^n)/2)*T(n-1,k-1). G.f.: (1+x)/(1-(1+y)*x^2). Sum_{k=0..n} T(n,k)*x^k = A000012(n), A016116(n), A108411(n), A213173(n), A074872(n+1) for x = 0,1,2,3,4 respectively. - Philippe Deléham, Nov 26 2011, Apr 22 2013 EXAMPLE Triangle begins:   1;   1, 0;   1, 1, 0;   1, 1, 0, 0;   1, 2, 1, 0, 0;   1, 2, 1, 0, 0, 0;   1, 3, 3, 1, 0, 0, 0;   1, 3, 3, 1, 0, 0, 0, 0;   1, 4, 6, 4, 1, 0, 0, 0, 0; ... MATHEMATICA m = 13; (* DELTA is defined in A084938 *) DELTA[Join[{1, 0, -1}, Table[0, {m}]], Join[{0, 1, -1}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *) PROG (Haskell) a152815 n k = a152815_tabl !! n !! k a152815_row n = a152815_tabl !! n a152815_tabl = [1] : [1, 0] : t [1, 0] where    t ys = zs : zs' : t zs' where      zs' = zs ++ [0]; zs = zipWith (+) ([0] ++ ys) (ys ++ [0]) -- Reinhard Zumkeller, Feb 28 2012 CROSSREFS Cf. A007318, A064861, A152198 (another version), A000931 (diagonal sums), A016116 (row sums). Sequence in context: A288969 A305355 A218380 * A115296 A059048 A257181 Adjacent sequences:  A152812 A152813 A152814 * A152816 A152817 A152818 KEYWORD easy,nonn,tabl AUTHOR Philippe Deléham, Dec 13 2008 EXTENSIONS Example corrected by Philippe Deléham, Dec 13 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 10 04:12 EDT 2021. Contains 343748 sequences. (Running on oeis4.)