login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074872
Inverse BinomialMean transform of the Fibonacci sequence A000045 (with the initial 0 omitted).
11
1, 1, 5, 5, 25, 25, 125, 125, 625, 625, 3125, 3125, 15625, 15625, 78125, 78125, 390625, 390625, 1953125, 1953125, 9765625, 9765625, 48828125, 48828125, 244140625, 244140625, 1220703125, 1220703125, 6103515625, 6103515625, 30517578125, 30517578125, 152587890625
OFFSET
1,3
COMMENTS
See A075271 for the definition of the BinomialMean transform.
The inverse binomial transform of 2^n*c(n+1), where c(n) is the solution to c(n) = c(n-1) + k*c(n-2), a(0)=0, a(1)=1 is 1, 1, 4k+1, 4k+1, (4k+1)^2, ... - Paul Barry, Feb 12 2004
FORMULA
a(n) = 5^floor((n-1)/2).
a(1)=1, a(2)=1 and, for n > 2, a(n) = 5*a(n-2).
From Paul Barry, Feb 12 2004: (Start)
G.f.: x*(1+x)/(1-5*x^2);
a(n) = (1/(2*sqrt(5))*((1+sqrt(5))*(sqrt(5))^n - (1-sqrt(5))*(-sqrt(5))^n)).
Inverse binomial transform of A063727 (2^n*Fibonacci(n+1)). (End)
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
E.g.f.: (cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x) - 1)/5. - Stefano Spezia, May 24 2024
MATHEMATICA
a[1] := 1; a[2] := 1; a[n_] := 5a[n - 2]; Table[a[n], {n, 30}] (* Alonso del Arte, Mar 04 2011 *)
PROG
(Magma) [5^Floor((n-1)/2): n in [1..40]]; // Vincenzo Librandi, Aug 16 2011
(PARI) a(n)=5^((n-1)\2) \\ Charles R Greathouse IV, Oct 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John W. Layman, Sep 12 2002
STATUS
approved