login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056449
a(n) = 3^floor((n+1)/2).
11
1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467
OFFSET
0,2
COMMENTS
One followed by powers of 3 with positive exponent, repeated. - Omar E. Pol, Jul 27 2009
Number of achiral rows of n colors using up to three colors. E.g., for a(3) = 9, the rows are AAA, ABA, ACA, BAB, BBB, BCB, CAC, CBC, and CCC. - Robert A. Russell, Nov 07 2018
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
FORMULA
G.f.: (1 + 3*x) / (1 - 3*x^2). - R. J. Mathar, Jul 06 2011 [Adapted to offset 0 by Robert A. Russell, Nov 07 2018]
a(n) = k^ceiling(n/2), where k = 3 is the number of possible colors. - Robert A. Russell, Nov 07 2018
a(n) = C(3,0)*A000007(n) + C(3,1)*A057427(n) + C(3,2)*A056453(n) + C(3,3)*A056454(n). - Robert A. Russell, Nov 08 2018
E.g.f.: cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x). - Stefano Spezia, Dec 31 2022
MATHEMATICA
Riffle[3^Range[0, 20], 3^Range[20]] (* Harvey P. Dale, Jan 21 2015 *)
Table[3^Ceiling[n/2], {n, 0, 40}] (* or *)
LinearRecurrence[{0, 3}, {1, 3}, 40] (* Robert A. Russell, Nov 07 2018 *)
PROG
(Magma) [3^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
(PARI) a(n)=3^floor((n+1)/2); \\ Joerg Arndt, Apr 23 2013
(Python)
def A056449(n): return 3**(n+1>>1) # Chai Wah Wu, Oct 28 2024
CROSSREFS
Column k=3 of A321391.
Essentially the same as A108411 and A162436.
Cf. A000244 (oriented), A032120 (unoriented), A032086(n>1) (chiral).
Sequence in context: A214439 A287479 A128019 * A108411 A162436 A146788
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Klaus Brockhaus, Jul 03 2009
a(0)=1 prepended by Robert A. Russell, Nov 07 2018
STATUS
approved