The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056450 a(n) = (3*2^n - (-2)^n)/2. 24
 1, 4, 4, 16, 16, 64, 64, 256, 256, 1024, 1024, 4096, 4096, 16384, 16384, 65536, 65536, 262144, 262144, 1048576, 1048576, 4194304, 4194304, 16777216, 16777216, 67108864, 67108864, 268435456, 268435456, 1073741824, 1073741824, 4294967296 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of palindromes of length n using a maximum of four different symbols. Number of achiral rows of n colors using up to four colors. - Robert A. Russell, Nov 09 2018 Interleaving of A000302 and 4*A000302. Unsigned version of A141125. Binomial transform is A164907. Second binomial transform is A164908. Third binomial transform is A057651. Fourth binomial transform is A016129. REFERENCES M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2] LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..2000 Index entries for linear recurrences with constant coefficients, signature (0,4). FORMULA a(n) = 4^floor((n+1)/2). a(n) = 4*a(n-2) for n > 1; a(0) = 1, a(1) = 4. G.f.: (1+4*x) / (1-4*x^2). - R. J. Mathar, Jan 19 2011 [Adapted to offset 0 by Robert A. Russell, Nov 07 2018] a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011 a(n) = 4*abs(A164111(n-1)). - R. J. Mathar, Jan 19 2011 a(n) = C(4,0)*A000007(n) + C(4,1)*A057427(n) + C(4,2)*A056453(n) + C(4,3)*A056454(n) + C(4,4)*A056455(n). - Robert A. Russell, Nov 08 2018 EXAMPLE At length n=1 there are a(1)=4 palindromes, A, B, C, D. At length n=2, there are a(2)=4 palindromes, AA, BB, CC, DD. At length n=3, there are a(3)=16 palindromes, AAA, BBB, CCC, DDD, ABA, BAB, ... , CDC, DCD. MATHEMATICA Table[4^Ceiling[n/2], {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 4 x)/((1 + 2 x) (1 - 2 x)), {x, 0, 31}], x] (* or *) LinearRecurrence[{0, 4}, {1, 4}, 40] (* Robert A. Russell, Nov 07 2018 *) PROG (MAGMA) [ (3*2^n-(-2)^n)/2: n in [0..31] ]; (MAGMA) [4^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011 (PARI) a(n)=4^((n+1)\2) \\ Charles R Greathouse IV, Apr 08 2012 (PARI) a(n)=(3*2^n-(-2)^n)/2 \\ Charles R Greathouse IV, Oct 03 2016 CROSSREFS Column k=4 of A321391. Cf. A000302 (powers of 4), A056450, A141125, A164907, A164908, A057651, A016129. Cf. A016116. Essentially the same as A213173. Cf. A000302 (oriented), A032121 (unoriented), A032087(n>1) (chiral). Sequence in context: A231839 A141125 A164111 * A164906 A213173 A222956 Adjacent sequences:  A056447 A056448 A056449 * A056451 A056452 A056453 KEYWORD nonn,easy AUTHOR EXTENSIONS a(0)=1 prepended by Robert A. Russell, Nov 07 2018 Edited by N. J. A. Sloane, Sep 29 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 15:26 EDT 2021. Contains 346428 sequences. (Running on oeis4.)