login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164908
a(n) = (3*4^n - 0^n)/2.
9
1, 6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624, 105553116266496, 422212465065984
OFFSET
0,2
COMMENTS
Binomial transform of A164907. Inverse binomial transform of A057651.
Partial sums are in A083420.
Decimal representations of the n-th iterations of elementary cellular automata rules 14, 46, 142 and 174 generate this sequence (see A266298 and A266299). - Karl V. Keller, Jr., Aug 31 2021
LINKS
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
FORMULA
a(n) = 4*a(n-1) for n > 1; a(0) = 1, a(1) = 6.
G.f.: (1+2*x)/(1-4*x).
a(n) = floor(6*4^(n-1)). - Karl V. Keller, Jr., Aug 30 2021
MATHEMATICA
a[n_]:=(MatrixPower[{{2, 2}, {2, 2}}, n].{{2}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
Join[{1}, (3*4^Range[25])/2] (* or *) Join[{1}, NestList[4#&, 6, 25]] (* Harvey P. Dale, Feb 14 2012 *)
PROG
(Magma) [ (3*4^n-0^n)/2: n in [0..22] ];
(PARI) a(n)=3*4^n\2 \\ Charles R Greathouse IV, Oct 12 2015
(Python) print([int(6*4**(n-1)) for n in range(50)]) # Karl V. Keller, Jr., Aug 30 2021
CROSSREFS
Equals 1 followed by A002023 (6*4^n). Essentially the same as A084509.
Sequence in context: A253101 A169759 A002023 * A290911 A037505 A048179
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Aug 31 2009
STATUS
approved