login
A084509
Number of ground-state 3-ball juggling sequences of period n.
10
1, 1, 2, 6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624, 105553116266496, 422212465065984
OFFSET
0,3
COMMENTS
This sequence counts the length n asynchronic site swaps given in A084501/A084502.
Equals row sums of triangle A145463. - Gary W. Adamson, Oct 11 2008
a(n) is the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {1>2, 1>3, 1>4, 1>5} of length 5. That is, the number of length n+1 permutations having no subsequences of length 5 in which the first element is the largest. - Sergey Kitaev, Dec 11 2020
a(n) is the number of permutations p[1]..p[n] of {1,...,n} with p[j+1] < p[j]+4 for 0 < j < n. - Don Knuth, Apr 25 2022
REFERENCES
B. Polster, The Mathematics of Juggling, Springer-Verlag, 2003, p. 48.
LINKS
Fan Chung and R. L. Graham, Primitive juggling sequences, Amer. Math. Monthly 115(3) (2008), 185-19.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
Kai Ting Keshia Yap, David Wehlau, and Imed Zaguia, Permutations Avoiding Certain Partially-ordered Patterns, arXiv:2101.12061 [math.CO], 2021.
FORMULA
a(n) = n! for n <= 4, a(n) = 6*4^(n-3) = A002023(n-3) for n >= 3.
G.f.: 1 + x*(1 - 2*x - 2*x^2)/(1 - 4*x). - Philippe Deléham, Aug 16 2005
MAPLE
A084509 := n -> `if`((n<4), n!, 6*(4^(n-3)));
INVERT([seq(A084519(n), n=1..12)]);
MATHEMATICA
LinearRecurrence[{4}, {1, 2, 6}, 30] (* Harvey P. Dale, Aug 23 2018 *)
CROSSREFS
First differences of A084508.
INVERT transform of A084519.
Sequence in context: A179350 A179356 A179363 * A334767 A323260 A147915
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Jun 02 2003
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 11 2020
STATUS
approved