login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084519
Number of indecomposable ground-state 3-ball juggling sequences of period n.
7
1, 1, 3, 13, 47, 173, 639, 2357, 8695, 32077, 118335, 436549, 1610471, 5941181, 21917583, 80856053, 298285687, 1100404333, 4059496479, 14975869477, 55247410055, 203812962077, 751885445295, 2773777080149, 10232728055191
OFFSET
1,3
COMMENTS
This sequence counts the length n asynchronic site swaps given in A084511/A084512.
First differences of A084518. INVERTi transform of A084509. Cf. also A084529, A003319.
Equals left border of triangle A145463. - Gary W. Adamson, Oct 11 2008
REFERENCES
Carsten Elsner, Dominic Klyve and Erik R. Tou, A zeta function for juggling sequences, Journal of Combinatorics and Number Theory, Volume 4, Issue 1, 2012, pp. 1-13; ISSN 1942-5600
FORMULA
a(n) seems to satisfy the recurrence: a(1) = a(2) = 1, a(3) = 3 and a(n) = 3*a(n-1)+2*a(n-2)+2*a(n-3). If so, a(n) = floor(A*B^n+1/2) where B = 3.6890953... is the real positive root of x^3-3x^2-2x-2 = 0 and A = 0.0687059... is the real positive root of 118*x^3+118*x^2+35*x-3 = 0. - Benoit Cloitre, Jun 14 2003 [This conjecture is established in the Chung-Graham paper.]
G.f.: x*(1-2*x-2*x^2)/(1-3*x-2*x^2-2*x^3). - Colin Barker, Jan 14 2012
MAPLE
INVERTi([seq(A084509(n), n=1..80)]);
with(combinat); A084519 := proc(n) option remember; local c, i, k; A084509(n)-add(add(mul(A084519(i), i=c), c=composition(n, k)), k=2..n); end;
MATHEMATICA
LinearRecurrence[{3, 2, 2}, {1, 1, 3}, 30] (* Harvey P. Dale, Jul 20 2013 *)
CROSSREFS
Cf. A145463. - Gary W. Adamson, Oct 11 2008
Sequence in context: A089930 A228529 A378405 * A304628 A265920 A262322
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2003
STATUS
approved