OFFSET
1,3
COMMENTS
REFERENCES
Carsten Elsner, Dominic Klyve and Erik R. Tou, A zeta function for juggling sequences, Journal of Combinatorics and Number Theory, Volume 4, Issue 1, 2012, pp. 1-13; ISSN 1942-5600
LINKS
Fan Chung, R. L. Graham, Primitive juggling sequences, Am. Math. Monthly 115 (3) (2008) 185-194
Index entries for linear recurrences with constant coefficients, signature (3, 2, 2).
FORMULA
a(n) seems to satisfy the recurrence: a(1) = a(2) = 1, a(3) = 3 and a(n) = 3*a(n-1)+2*a(n-2)+2*a(n-3). If so, a(n) = floor(A*B^n+1/2) where B = 3.6890953... is the real positive root of x^3-3x^2-2x-2 = 0 and A = 0.0687059... is the real positive root of 118*x^3+118*x^2+35*x-3 = 0. - Benoit Cloitre, Jun 14 2003 [This conjecture is established in the Chung-Graham paper.]
G.f.: x*(1-2*x-2*x^2)/(1-3*x-2*x^2-2*x^3). - Colin Barker, Jan 14 2012
MAPLE
MATHEMATICA
LinearRecurrence[{3, 2, 2}, {1, 1, 3}, 30] (* Harvey P. Dale, Jul 20 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2003
STATUS
approved