login
A304628
a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 + x^(4*k)))^n.
2
1, 1, 3, 13, 47, 181, 729, 2948, 12031, 49540, 205153, 853546, 3565505, 14943839, 62810786, 264650683, 1117486463, 4727486583, 20032950744, 85017558081, 361289789377, 1537198394570, 6547611493822, 27917246924099, 119141276756545, 508884954441331, 2175284934712217, 9305217981192748
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] Product_{k>=1} ((1 - x^(8*k-4))/(1 - x^(2*k-1)))^n.
a(n) ~ c * d^n / sqrt(n), where d = 4.3582188263213968630940316689... and c = 0.266443662680498334500839... - Vaclav Kotesovec, May 18 2018
MATHEMATICA
Table[SeriesCoefficient[Product[((1 + x^k)/(1 + x^(4 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 27}]
Table[SeriesCoefficient[Product[((1 - x^(8 k - 4))/(1 - x^(2 k - 1)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 27}]
(* Calculation of constants {d, c}: *) With[{k = 4}, {1/r, Sqrt[QPochhammer[-1, (r*s)^k] / (2*Pi*(r^2*s*Derivative[0, 2][QPochhammer][-1, r*s] - k^2*(r*s)^(2*k) * Derivative[0, 2][QPochhammer][-1, (r*s)^k] - k*(1 + k)*(r*s)^k * Derivative[0, 1][QPochhammer][-1, (r*s)^k]))]} /. FindRoot[{s == QPochhammer[-1, r*s]/QPochhammer[-1, (r*s)^k], QPochhammer[-1, (r*s)^k] + k*(r*s)^k*Derivative[0, 1][QPochhammer][-1, (r*s)^k] == r*Derivative[0, 1][QPochhammer][-1, r*s]}, {r, 1/4}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 15 2018
STATUS
approved