|
|
A304628
|
|
a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 + x^(4*k)))^n.
|
|
2
|
|
|
1, 1, 3, 13, 47, 181, 729, 2948, 12031, 49540, 205153, 853546, 3565505, 14943839, 62810786, 264650683, 1117486463, 4727486583, 20032950744, 85017558081, 361289789377, 1537198394570, 6547611493822, 27917246924099, 119141276756545, 508884954441331, 2175284934712217, 9305217981192748
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..500
|
|
FORMULA
|
a(n) = [x^n] Product_{k>=1} ((1 - x^(8*k-4))/(1 - x^(2*k-1)))^n.
a(n) ~ c * d^n / sqrt(n), where d = 4.3582188263213968630940316689... and c = 0.266443662680498334500839... - Vaclav Kotesovec, May 18 2018
|
|
MATHEMATICA
|
Table[SeriesCoefficient[Product[((1 + x^k)/(1 + x^(4 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 27}]
Table[SeriesCoefficient[Product[((1 - x^(8 k - 4))/(1 - x^(2 k - 1)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 27}]
|
|
CROSSREFS
|
Cf. A070048, A255526, A285290, A296044, A296164, A304629.
Sequence in context: A089930 A228529 A084519 * A265920 A262322 A180278
Adjacent sequences: A304625 A304626 A304627 * A304629 A304630 A304631
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, May 15 2018
|
|
STATUS
|
approved
|
|
|
|