OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
G.f.: 1/theta_4(x) - 2*x/(1 - x), where theta_4() is the Jacobi theta function.
a(n) ~ exp(Pi*sqrt(n)) / (8*n). - Vaclav Kotesovec, May 19 2018
MATHEMATICA
Table[SeriesCoefficient[Product[(1 + x^k) (1 - x^(n k))/((1 - x^k) (1 + x^(n k))) , {k, 1, n}], {x, 0, n}], {n, 0, 43}]
Table[SeriesCoefficient[Product[(1 + x^k)/(1 - x^k), {k, 1, n - 1}], {x, 0, n}], {n, 0, 43}]
Join[{1}, Table[SeriesCoefficient[EllipticTheta[4, 0, x^n]/EllipticTheta[4, 0, x], {x, 0, n}], {n, 43}]]
nmax = 43; CoefficientList[Series[1/EllipticTheta[4, 0, x] - 2 x/(1 - x), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 15 2018
STATUS
approved