login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138526
Expansion of phi(-q^5) / phi(-q) in powers of q where phi() is a Ramanujan theta function.
11
1, 2, 4, 8, 14, 22, 36, 56, 84, 126, 184, 264, 376, 528, 732, 1008, 1374, 1856, 2492, 3320, 4394, 5784, 7568, 9848, 12756, 16442, 21096, 26960, 34312, 43500, 54956, 69184, 86804, 108576, 135392, 168336, 208722, 258096, 318320, 391632, 480664
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q^5) / eta(q))^2 * eta(q^2) / eta(q^10) in powers of q.
Euler transform of period 10 sequence [ 2, 1, 2, 1, 0, 1, 2, 1, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u^2 - v^2)^2 - u^2 * (v^2 - 1) * (5*v^2 - 1).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u^2 - v^2) * (u + v)^2 - u * v * (u^2 - 1) * (5*v^2 - 1).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u - v)^2 * w^2 - u * v * (v^2 - 1).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 * u6 - u2 * u3)^2 - u1 * u3 * (u2^2 - u6^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = 5^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A138532.
G.f.: Product_{k>0} P(5, x^k) / P(10, x^k) where P(n, x) is the n-th cyclotomic polynomial.
Convolution square is A138517. Convolution inverse is A138527.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2*5^(3/4)*n^(3/4)). - Vaclav Kotesovec, Sep 01 2015
EXAMPLE
G.f. = 1 + 2*q + 4*q^2 + 8*q^3 + 14*q^4 + 22*q^5 + 36*q^6 + 56*q^7 + 84*q^8 + ...
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)*(1-x^(5*k))/((1-x^k)*(1+x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^5] / EllipticTheta[ 4, 0, q], {q, 0, n}]; (* Michael Somos, Sep 14 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^5 + A) / eta(x + A))^2 * eta(x^2 + A) / eta(x^10 + A), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 23 2008
STATUS
approved