login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138532
Expansion of psi(x) / psi(x^5) in powers of x where psi() is a Ramanujan theta function.
6
1, 1, 0, 1, 0, -1, 0, 0, -1, 0, 2, 0, 0, 1, 0, -2, -1, 0, -2, 0, 3, 2, 0, 3, 0, -5, -2, 0, -3, 0, 6, 2, 0, 4, 0, -8, -3, 0, -6, 0, 11, 5, 0, 8, 0, -14, -6, 0, -10, 0, 18, 6, 0, 12, 0, -22, -9, 0, -16, 0, 28, 13, 0, 21, 0, -36, -14, 0, -25, 0, 44, 16, 0, 30, 0
OFFSET
0,11
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 233, Entry 66.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/2) * (eta(q^2) / eta(q^10))^2 * eta(q^5) / eta(q) in powers of q.
Euler transform of period 10 sequence [ 1, -1, 1, -1, 0, -1, 1, -1, 1, 0, ...].
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (v^2 - u^2)^2 - (u^2 - 1) * (u^2 - 5) * v^2.
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (v^2 - u^2) * (u + v)^2 - u * v * (u^2 - 1) * (v^2 - 5).
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2 * w * (v^2 - 1) - v * (v + w)^2.
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = (u1 * u6 - u2 * u3)^2 - u2 * u6 * (u3^2 - u1^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = 5^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A138526.
G.f.: (Product_{k>0} P(5,x^k) * P(10,x^k)^2)^(-1) where P(n,x) is the n-th cyclotomic polynomial.
a(5*n + 2) = a(5*n + 4) = 0.
Convolution square is A138516. Convolution inverse is A116494.
EXAMPLE
G.f. = 1 + x + x^3 - x^5 - x^8 + 2*x^10 + x^13 - 2*x^15 - x^16 - 2*x^18 + ...
G.f. = 1/q + q + q^5 - q^9 - q^15 + 2*q^19 + q^25 - 2*q^29 - q^31 - 2*q^35 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x^(1/2) EllipticTheta[ 2, 0, x^(1/2)] / EllipticTheta[ 2, 0, x^(5/2)], {x, 0, n}]; (* Michael Somos, Sep 08 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^5 + A) / eta(x + A) * (eta(x^2 + A) / eta(x^10 + A))^2, n))};
CROSSREFS
Sequence in context: A084143 A025888 A145708 * A339445 A065293 A364377
KEYWORD
sign
AUTHOR
Michael Somos, Mar 23 2008
STATUS
approved