OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2)*eta(q)*eta(q^10)^2/(eta(q^2)^2*eta(q^5)) in powers of q.
Euler transform of period 10 sequence [ -1,1,-1,1,0,1,-1,1,-1,0,...].
Given g.f. A(x), then B(x)=x*A(x^2) satisfies 0=f(B(x),B(x^2)) where f(u,v)=(1-u^2)(1-5u^2)v^2 -(u^2-v^2)^2.
Given g.f. A(x), then B(x)=x*A(x^2) satisfies 0=f(B(x),B(x^2),B(x^4)) where f(u,v,w)=v*w*(1-v^2)-u^2*(v+w)^2.
Given g.f. A(x), then B(x)=x*A(x^2) satisfies 0=f(B(x),B(x^2),B(x^3),B(x^6)) where f(u1,u2,u3,u6)=u2*u6*(u1^2-u3^2) -(u2*u3-u1*u6)^2.
G.f.: Product_{k>0} (1-x^k)/(1-x^(5k))*((1-x^(10k))/(1-x^(2k)))^2 = (Sum_{k>0} x^(5(k^2-k)/2))/(Sum_{k>0} x^((k^2-k)/2)).
a(n) = (-1)^n*A036026(n).
MATHEMATICA
a[n_]:= SeriesCoefficient[q^(-1/2)*(EllipticTheta[2, 0, q^(5/2)]/EllipticTheta[2, 0, q^(1/2)]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jan 04 2018 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)*eta(x^10+A)^2/eta(x^2+A)^2/eta(x^5+A), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 18 2006
STATUS
approved