The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065293 Number of values of s, 0 <= s <= n-1, such that 2^s mod n = s. 2
 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 0, 3, 0, 0, 1, 1, 2, 0, 1, 2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 1, 0, 2, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,21 LINKS Michel Marcus, Table of n, a(n) for n = 1..1000 EXAMPLE For n=5 we have (2^0) mod 5 = 1, (2^1) mod 5 = 2, (2^2) mod 5 = 4, (2^3) mod 5 = 3, (2^4) mod 5 = 1. Only for s=3 does (2^s) mod 5=s, so a(5)=1 MATHEMATICA Table[Count[Range[0, n - 1], _?(Mod[2^#, n] == # &)], {n, 105}] (* Michael De Vlieger, Jun 19 2018 *) PROG (PARI) a(n) = sum(s=0, n-1, Mod(2, n)^s == s); \\ Michel Marcus, Jun 19 2018 CROSSREFS Cf. A065294. Sequence in context: A025888 A145708 A138532 * A164615 A182034 A171912 Adjacent sequences:  A065290 A065291 A065292 * A065294 A065295 A065296 KEYWORD nonn AUTHOR Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 28 2001 EXTENSIONS a(1) corrected by Michel Marcus, Jun 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 00:29 EDT 2020. Contains 334747 sequences. (Running on oeis4.)