OFFSET
1,1
COMMENTS
Conjecture: The difference a(n + 1) - a(n) between two consecutive terms is not a perfect square except for n = 1, 5 and 6.
LINKS
Robert Israel, Table of n, a(n) for n = 1..2000
MAPLE
a := n -> sum(floor(2*n^k/k^k), k = 1 .. n): seq(a(n), n = 1 .. 40)
MATHEMATICA
a[n_]:=Sum[Floor[2*(n/k)^k], {k, 1, n}]; Array[a, 40]
PROG
(Maxima) a(n):=sum(floor(2*n^k/k^k), k, 1, n)$ makelist(a(n), n, 0, 40);
(PARI)
a(n) = sum(k=1, n, floor(2*n^k/k^k));
vector(40, n, a(n))
(GAP) List([1..40], n->Sum([1..n], k->Int(2*n^k/k^k))); # Muniru A Asiru, Nov 25 2018
(Magma) [(&+[Floor(2*(n/k)^k): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Nov 25 2018
(Sage) [sum(floor(2*(n/k)^k) for k in (1..n)) for n in (1..40)] # G. C. Greubel, Nov 25 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Nov 25 2018
STATUS
approved