This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000065 -1 + number of partitions of n. (Formerly M1012 N0379) 35
 0, 0, 1, 2, 4, 6, 10, 14, 21, 29, 41, 55, 76, 100, 134, 175, 230, 296, 384, 489, 626, 791, 1001, 1254, 1574, 1957, 2435, 3009, 3717, 4564, 5603, 6841, 8348, 10142, 12309, 14882, 17976, 21636, 26014, 31184, 37337, 44582, 53173, 63260, 75174, 89133, 105557, 124753 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n+1) is the number of noncongruent n-dimensional integer-sided simplices with diameter n. - Sascha Kurz, Jul 26 2004 Also, the number of partitions of n into parts each less than n. Also, the number of distinct types of equation which can be derived from the equation [n,0,0] not including itself. (Ince) Also, the number of rooted trees on n+1 nodes with height exactly 2. Also, the number of partitions (of any positive integer) whose sum + length is <= n. Example: a(5) = 6 counts 4, 3, 21, 2, 11, 1. Proof: Given a partition of n other than the all 1s partition, subtract 1 from each part and then drop the zeros. This is a bijection to the partitions with sum + length <= n. - David Callan, Nov 29 2007 a(n) = A026820(n,n-1) for n>1. - Reinhard Zumkeller, Jan 21 2010 REFERENCES E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944, p. 498; MR0010757. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS N. J. A. Sloane and Vincenzo Librandi, Table of n, a(n) for n = 0..1000 (first 199 terms from N. J. A. Sloane) V. Modrak, D. Marton, Development of Metrics and a Complexity Scale for the Topology of Assembly Supply Chains, Entropy 2013, 15, 4285-4299 J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478. J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy) FORMULA G.f.: x*G(0)/(x-1) where G(k) =  1 - 1/(1-x^(k+1))/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 23 2013 EXAMPLE G.f. = x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 10*x^6 + 14*x^7 + 21*x^8 + 29*x^9 + ... MAPLE with (combstruct):ZL:=proc(m) local i; [T0, {seq(T.i=Prod(Z, Set(T.(i+1))), i=0..m-1), T.m=Z}, unlabeled] end:A:=n -> count(ZL(2), size=n)-count(ZL(1), size=n): seq(A(n), n=1..46); # Zerinvary Lajos, Dec 05 2007 ZL :=[S, {S = Set(Cycle(Z), 1 < card)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..45); # Zerinvary Lajos, Mar 25 2008 MATHEMATICA nn=40; CoefficientList[Series[Product[1/(1-x^i), {i, 1, nn}]-1/(1-x), {x, 0, nn}], x]  (* Geoffrey Critzer, Oct 28 2012 *) PartitionsP[Range[0, 50]]-1 (* Harvey P. Dale, Aug 24 2013 *) PROG (PARI) {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + x*O(x^n)), n) - 1)}; (PARI) {a(n) = if( n<0, 0, numbpart(n) - 1)}; (MAGMA) [NumberOfPartitions(n)-1: n in [0..50]]; // Vincenzo Librandi, Aug 25 2013 CROSSREFS A000041 - 1. A diagonal of A058716. Column h=2 of A034781. Sequence in context: A238871 A323595 A136460 * A237758 A023499 A103445 Adjacent sequences:  A000062 A000063 A000064 * A000066 A000067 A000068 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 09:31 EDT 2019. Contains 328315 sequences. (Running on oeis4.)