The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000063 Symmetrical dissections of an n-gon.
(Formerly M0978 N0367)
3
1, 1, 2, 4, 5, 14, 14, 39, 42, 132, 132, 424, 429, 1428, 1430, 4848, 4862, 16796, 16796, 58739, 58786, 208012, 208012, 742768, 742900, 2674426, 2674440, 9694416, 9694845, 35357670, 35357670, 129643318, 129644790, 477638700, 477638700, 1767258328, 1767263190, 6564120288 (list; graph; refs; listen; history; text; internal format)
OFFSET
5,3
COMMENTS
This sequence, S_n in Guy's 1958 paper, counts triangulations of a regular n-gon into n-2 triangles such that the only symmetries of the triangulation are the identity and a single reflection ("symmetry of a kite"). Triangulations related by a symmetry of the underlying n-gon do not count as distinct. - Joseph Myers, Jun 21 2012
A000108 is a subsequence, see formula. - Ralf Stephan, Aug 19 2004 (edited, Joerg Arndt, Aug 31 2014)
REFERENCES
R. K. Guy, Dissecting a polygon into triangles, Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751.
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751. [Annotated scanned copy]
R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967. [Annotated scanned copy]
FORMULA
a(2n+3) = A000108(n), n>0. - M. F. Hasler, Mar 25 2012
a(n) = Catalan(floor(n/2) - 1) - Catalan(n/4 - 1) - Catalan (n/6 - 1), where Catalan(x) = 0 for noninteger x (from Guy's 1958 paper). - Joseph Myers, Jun 21 2012
MATHEMATICA
c[n_Integer] := CatalanNumber[n]; c[_] = 0; a[n_] := c[Floor[n/2]-1] - c[n/4-1] - c[n/6-1]; Array[a, 40, 5] (* Jean-François Alcover, Feb 03 2016, after Joseph Myers *)
PROG
(PARI)
C(n)=if(type(n)==type(1), binomial(2*n, n)/(n+1), 0);
a(n)=C(floor(n/2)-1) - C(n/4-1) - C(n/6-1);
vector(66, n, a(n+4))
\\ Joerg Arndt, Aug 31 2014
CROSSREFS
Sequence in context: A367027 A104549 A174513 * A368378 A367298 A039574
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by Joseph Myers, Jun 21 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 06:24 EDT 2024. Contains 372743 sequences. (Running on oeis4.)