This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000062 A Beatty sequence: a(n) = floor(n/(e-2)). (Formerly M0948 N0355) 3
 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97, 98 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Christian G. Bower, Table of n, a(n) for n = 1..1000 I. G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull., 2 (1959), 190-197. I. G. Connell, Some properties of Beatty sequences II, Canad. Math. Bull., 3 (1960), 17-22. J. Lambek and L. Moser, Inverse and complementary sequences of natural numbers, Amer. Math. Monthly, 61 (1954), 454-458. J. Lambek and L. Moser, On some two way classifications of integers, Canad. Math. Bull. 2 (1959), 85-89. MAPLE for n from 1 to 200 do printf(`%d, `, floor( n/(exp(1)-2))) od: MATHEMATICA Table[Floor[n/(E-2)], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 24 2012 *) PROG (PARI) a(n)=floor( n/(exp(1)-2) ) \\ Hauke Worpel (thebigh(AT)outgun.com), Jun 11 2008 (MAGMA) [Floor( n/(Exp(1)-2) ): n in [1..80]]; // Vincenzo Librandi, Mar 27 2015 CROSSREFS Cf. A194807 (1/(e-2)). Sequence in context: A087118 A249115 A039032 * A247964 A047317 A288998 Adjacent sequences:  A000059 A000060 A000061 * A000063 A000064 A000065 KEYWORD nonn AUTHOR EXTENSIONS More terms from James A. Sellers, Feb 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 03:24 EDT 2019. Contains 328291 sequences. (Running on oeis4.)