login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000068
Numbers k such that k^4 + 1 is prime.
(Formerly M1027 N0386)
55
1, 2, 4, 6, 16, 20, 24, 28, 34, 46, 48, 54, 56, 74, 80, 82, 88, 90, 106, 118, 132, 140, 142, 154, 160, 164, 174, 180, 194, 198, 204, 210, 220, 228, 238, 242, 248, 254, 266, 272, 276, 278, 288, 296, 312, 320, 328, 334, 340, 352, 364, 374, 414, 430, 436, 442, 466
OFFSET
1,2
REFERENCES
Harvey Dubner, Generalized Fermat primes, J. Recreational Math., 18 (1985): 279-280.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
M. Lal, Primes of the form n^4 + 1, Math. Comp., 21 (1967), 245-247.
D. Shanks, On numbers of the form n^4+1, Math. Comp. 15 (74) (1961), 186-189.
MATHEMATICA
Select[Range[10^2*2], PrimeQ[ #^4+1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
PROG
(PARI) {a(n) = local(m); if( n<1, 0, for(k=1, n, until( isprime(m^4 + 1), m++)); m)};
(PARI) list(lim)=my(v=List([1])); forstep(k=2, lim, 2, if(isprime(k^4+1), listput(v, k))); Vec(v) \\ Charles R Greathouse IV, Mar 31 2022
(Magma) [n: n in [0..800] | IsPrime(n^4+1)]; // Vincenzo Librandi, Nov 18 2010
KEYWORD
nonn,easy
STATUS
approved