login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248334 The subsequence of A246885 having even values. 1
0, 2, 4, 6, 16, 20, 32, 34, 48, 54, 58, 86, 108, 110, 124, 128, 132, 160, 162, 236, 250, 254, 256, 258, 272, 282, 310, 358, 384, 432, 436, 464, 500, 502, 506, 516, 540, 554, 628, 686, 688, 690, 718, 750, 794, 864, 866, 880, 918, 932, 942, 992, 1024, 1028, 1056 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Let f(x)=Sum(x^i^3), then 1/f(x) has coefficients given in A246885. The subsequence of A246885 having even values is A248334. This is the same as the numbers that can be written in an odd number of ways as a sum 2r^3 + 4s^3, where r and s are nonnegative integers.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

Joshua N. Cooper, Dennis Eichhorn, Kevin O'Bryant, Reciprocals of Binary Power Series, arXiv:math/0506496 [math.NT], 2005.

MAPLE

b:= proc(n) option remember; irem(`if`(n=0, 1,

      `if`(n<0, 0, add(b(n-i^3), i=1..iroot(n, 3)))), 2)

    end:

a:= proc(n) option remember; local k; for k from 2+

      `if`(n=1, -2, a(n-1)) by 2 while b(k)=0 do od; k

    end:

seq(a(n), n=1..80);  # Alois P. Heinz, Dec 28 2014

MATHEMATICA

InverseOfCubes[m_]:=Module[{V}, V[0]=1; Do[V[i]=0, {i, 1, m}];

Reap[Sow[0];

Do[If[OddQ[Sum[V[counter-i^3], {i, 1, counter^(1/3)}]], V[counter]=1;

Sow[counter]], {counter, 1, m}]][[2, 1]]]

inv=InverseOfCubes[400];

Select[inv, EvenQ]

(* This program adapted from code written by Kevin O'Bryant *)

CROSSREFS

Sequence in context: A069654 A000068 A067662 * A001774 A053285 A286850

Adjacent sequences:  A248331 A248332 A248333 * A248335 A248336 A248337

KEYWORD

nonn

AUTHOR

David S. Newman, Oct 04 2014

EXTENSIONS

More terms from Alois P. Heinz, Dec 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 17:34 EST 2019. Contains 329106 sequences. (Running on oeis4.)