login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248337
a(n) = 6^n - 4^n.
3
0, 2, 20, 152, 1040, 6752, 42560, 263552, 1614080, 9815552, 59417600, 358602752, 2160005120, 12993585152, 78095728640, 469111242752, 2816814940160, 16909479575552, 101491237191680, 609084862103552, 3655058928435200, 21932552593866752, 131604111656222720, 789659854309425152, 4738099863344906240, 28429162130022858752
OFFSET
0,2
FORMULA
G.f.: 2*x/((1-4*x)*(1-6*x)).
a(n) = 10*a(n-1) - 24*a(n-2).
a(n) = 2^n*(3^n-2^n) = A000079(n) * A001047(n) = A000400(n) - A000302(n).
a(n) = 2*A081199(n). - Bruno Berselli, Oct 05 2014
E.g.f.: 2*exp(5*x)*sinh(x). - G. C. Greubel, Nov 11 2024
MATHEMATICA
Table[6^n - 4^n, {n, 0, 30}]
CoefficientList[Series[(2 x)/((1-4 x)(1-6 x)), {x, 0, 30}], x]
LinearRecurrence[{10, -24}, {0, 2}, 30] (* Harvey P. Dale, Aug 18 2024 *)
PROG
(Magma) [6^n-4^n: n in [0..30]];
(PARI) vector(20, n, 6^(n-1)-4^(n-1)) \\ Derek Orr, Oct 05 2014
(SageMath)
A248337=BinaryRecurrenceSequence(10, -24, 0, 2)
[A248337(n) for n in range(31)] # G. C. Greubel, Nov 11 2024
CROSSREFS
Cf. sequences of the form k^n - 4^n: -A000302 (k=0), -A024036 (k=1), -A020522 (k=2), -A005061 (k=3), A005060 (k=5), this sequence (k=6), A190542 (k=7), A059409 (k=8), A118004 (k=9), A248338 (k=10), A139742 (k=11), 8*A016159 (k=12).
Sequence in context: A081159 A105489 A093302 * A270444 A093130 A043029
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 05 2014
EXTENSIONS
More terms added by G. C. Greubel, Nov 11 2024
STATUS
approved