|
|
A059409
|
|
a(n) = 4^n * (2^n - 1).
|
|
3
|
|
|
0, 4, 48, 448, 3840, 31744, 258048, 2080768, 16711680, 133955584, 1072693248, 8585740288, 68702699520, 549688705024, 4397778075648, 35183298347008, 281470681743360, 2251782633816064, 18014329790005248, 144114913197948928
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Jordan's totient functions are described more fully in A059379 and A059380; for example, J_1(n) is Euler's totient function and J_2(n) the Moebius transform of squares.
|
|
REFERENCES
|
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 4*x / ( (8*x-1)*(4*x-1) ). - R. J. Mathar, Nov 23 2018
Sum_{n>0} 1/a(n) = E - 4/3, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022
|
|
EXAMPLE
|
(4,48,448,3840,...) = (8,64,512,4096,...) - (2,12,56,240,...) - (1,3,7,15,...) - (1,1,1,1,...)
|
|
MAPLE
|
|
|
MATHEMATICA
|
Table[4^n*(2^n - 1), {n, 0, 30}] (* G. C. Greubel, Jan 29 2018 *)
LinearRecurrence[{12, -32}, {0, 4}, 20] (* Harvey P. Dale, Oct 14 2019 *)
|
|
PROG
|
(PARI) { for (n = 0, 100, write("b059409.txt", n, " ", 4^n*(2^n - 1)); ) } \\ Harry J. Smith, Jun 26 2009
(GAP) List([0..100], n->4^n * (2^n - 1)); # Muniru A Asiru, Jan 29 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|