The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059409 a(n) = 4^n * (2^n - 1). 3
 0, 4, 48, 448, 3840, 31744, 258048, 2080768, 16711680, 133955584, 1072693248, 8585740288, 68702699520, 549688705024, 4397778075648, 35183298347008, 281470681743360, 2251782633816064, 18014329790005248, 144114913197948928 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Jordan's totient functions are described more fully in A059379 and A059380; for example, J_1(n) is Euler's totient function and J_2(n) the Moebius transform of squares. REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3. LINKS Harry J. Smith, Table of n, a(n) for n = 0..100 Index entries for linear recurrences with constant coefficients, signature (12,-32). FORMULA Equals J_n(8) (see A059379). J_n(8) = 8^n - A024023(n) - A000225(n) - A000012(n). a(n) = 4*A016152(n). G.f.: 4*x / ( (8*x-1)*(4*x-1) ). - R. J. Mathar, Nov 23 2018 EXAMPLE (4,48,448,3840,...) = (8,64,512,4096,...) - (2,12,56,240,...) - (1,3,7,15,...) - (1,1,1,1,...) MAPLE seq(4^n * (2^n - 1), n=0..100); # Muniru A Asiru, Jan 29 2018 MATHEMATICA Table[4^n*(2^n - 1), {n, 0, 30}] (* G. C. Greubel, Jan 29 2018 *) LinearRecurrence[{12, -32}, {0, 4}, 20] (* Harvey P. Dale, Oct 14 2019 *) PROG (PARI) { for (n = 0, 100, write("b059409.txt", n, " ", 4^n*(2^n - 1)); ) } \\ Harry J. Smith, Jun 26 2009 (MAGMA) [4^n*(2^n - 1): n in [0..40]]; // Vincenzo Librandi, 26 2011 (GAP) List([0..100], n->4^n * (2^n - 1)); # Muniru A Asiru, Jan 29 2018 CROSSREFS Cf. A059379, A059380, A016152. Sequence in context: A269180 A228701 A111903 * A297816 A297987 A298842 Adjacent sequences:  A059406 A059407 A059408 * A059410 A059411 A059412 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Alford Arnold, Jan 30 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)