The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059409 a(n) = 4^n * (2^n - 1). 3
 0, 4, 48, 448, 3840, 31744, 258048, 2080768, 16711680, 133955584, 1072693248, 8585740288, 68702699520, 549688705024, 4397778075648, 35183298347008, 281470681743360, 2251782633816064, 18014329790005248, 144114913197948928 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Jordan's totient functions are described more fully in A059379 and A059380; for example, J_1(n) is Euler's totient function and J_2(n) the Moebius transform of squares. REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3. LINKS Harry J. Smith, Table of n, a(n) for n = 0..100 Index entries for linear recurrences with constant coefficients, signature (12,-32). FORMULA Equals J_n(8) (see A059379). J_n(8) = 8^n - A024023(n) - A000225(n) - A000012(n). a(n) = 4*A016152(n). G.f.: 4*x / ( (8*x-1)*(4*x-1) ). - R. J. Mathar, Nov 23 2018 Sum_{n>0} 1/a(n) = E - 4/3, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022 EXAMPLE (4,48,448,3840,...) = (8,64,512,4096,...) - (2,12,56,240,...) - (1,3,7,15,...) - (1,1,1,1,...) MAPLE seq(4^n * (2^n - 1), n=0..100); # Muniru A Asiru, Jan 29 2018 MATHEMATICA Table[4^n*(2^n - 1), {n, 0, 30}] (* G. C. Greubel, Jan 29 2018 *) LinearRecurrence[{12, -32}, {0, 4}, 20] (* Harvey P. Dale, Oct 14 2019 *) PROG (PARI) { for (n = 0, 100, write("b059409.txt", n, " ", 4^n*(2^n - 1)); ) } \\ Harry J. Smith, Jun 26 2009 (Magma) [4^n*(2^n - 1): n in [0..40]]; // Vincenzo Librandi, 26 2011 (GAP) List([0..100], n->4^n * (2^n - 1)); # Muniru A Asiru, Jan 29 2018 CROSSREFS Cf. A059379, A059380, A016152. Cf. A024023, A000225, A000012. Cf. A065442. Sequence in context: A269180 A228701 A111903 * A357663 A297816 A297987 Adjacent sequences: A059406 A059407 A059408 * A059410 A059411 A059412 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Alford Arnold, Jan 30 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 22:25 EDT 2023. Contains 363138 sequences. (Running on oeis4.)