OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..920
Index entries for linear recurrences with constant coefficients, signature (16,-48).
FORMULA
a(n) = 2^(2*n-1)*(3^(n+1)-1). - Bruno Berselli, Feb 09 2011
a(n) = 12*a(n-1) + 4^n with a(0)=1. - Vincenzo Librandi, Feb 09 2011
a(n) = 16*a(n-1) - 48*a(n-2), a(0)=1, a(1)=16. - Harvey P. Dale, Nov 30 2011
E.g.f.: (1/2)*(3*exp(12*x) - exp(4*x)). - G. C. Greubel, Nov 11 2024
MATHEMATICA
Table[2^(2*n-1)*(3^(n+1)-1), {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011 *)
CoefficientList[Series[1/((1-4x)(1-12x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{16, -48}, {1, 16}, 20] (* Harvey P. Dale, Nov 30 2011 *)
PROG
(Magma) [2^(2*n-1)*(3^(n+1)-1): n in [0..30]]; // G. C. Greubel, Nov 11 2024
(SageMath)
A016159=BinaryRecurrenceSequence(16, -48, 1, 16)
[A016159(n) for n in range(31)] # G. C. Greubel, Nov 11 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms added by G. C. Greubel, Nov 11 2024
STATUS
approved