login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016159
Expansion of 1/((1-4*x)*(1-12*x)).
2
1, 16, 208, 2560, 30976, 372736, 4476928, 53739520, 644939776, 7739539456, 92875522048, 1114510458880, 13374142283776, 160489774514176, 1925877562605568, 23110531825008640, 277326386195070976, 3327916651520720896, 39934999886968127488, 479219998918495436800, 5750639988121456869376, 69007679861855528943616
OFFSET
0,2
FORMULA
a(n) = 2^(2*n-1)*(3^(n+1)-1). - Bruno Berselli, Feb 09 2011
a(n) = 12*a(n-1) + 4^n with a(0)=1. - Vincenzo Librandi, Feb 09 2011
a(n) = 16*a(n-1) - 48*a(n-2), a(0)=1, a(1)=16. - Harvey P. Dale, Nov 30 2011
E.g.f.: (1/2)*(3*exp(12*x) - exp(4*x)). - G. C. Greubel, Nov 11 2024
MATHEMATICA
Table[2^(2*n-1)*(3^(n+1)-1), {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011 *)
CoefficientList[Series[1/((1-4x)(1-12x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{16, -48}, {1, 16}, 20] (* Harvey P. Dale, Nov 30 2011 *)
PROG
(Magma) [2^(2*n-1)*(3^(n+1)-1): n in [0..30]]; // G. C. Greubel, Nov 11 2024
(SageMath)
A016159=BinaryRecurrenceSequence(16, -48, 1, 16)
[A016159(n) for n in range(31)] # G. C. Greubel, Nov 11 2024
CROSSREFS
Sequence in context: A046088 A186853 A378484 * A297370 A285167 A283694
KEYWORD
nonn
EXTENSIONS
More terms added by G. C. Greubel, Nov 11 2024
STATUS
approved