login
A016159
Expansion of 1/((1-4*x)*(1-12*x)).
2
1, 16, 208, 2560, 30976, 372736, 4476928, 53739520, 644939776, 7739539456, 92875522048, 1114510458880, 13374142283776, 160489774514176, 1925877562605568, 23110531825008640, 277326386195070976, 3327916651520720896, 39934999886968127488, 479219998918495436800, 5750639988121456869376, 69007679861855528943616
OFFSET
0,2
FORMULA
a(n) = 2^(2*n-1)*(3^(n+1)-1). - Bruno Berselli, Feb 09 2011
a(n) = 12*a(n-1) + 4^n with a(0)=1. - Vincenzo Librandi, Feb 09 2011
a(n) = 16*a(n-1) - 48*a(n-2), a(0)=1, a(1)=16. - Harvey P. Dale, Nov 30 2011
E.g.f.: (1/2)*(3*exp(12*x) - exp(4*x)). - G. C. Greubel, Nov 11 2024
MATHEMATICA
Table[2^(2*n-1)*(3^(n+1)-1), {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011 *)
CoefficientList[Series[1/((1-4x)(1-12x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{16, -48}, {1, 16}, 20] (* Harvey P. Dale, Nov 30 2011 *)
PROG
(Magma) [2^(2*n-1)*(3^(n+1)-1): n in [0..30]]; // G. C. Greubel, Nov 11 2024
(SageMath)
A016159=BinaryRecurrenceSequence(16, -48, 1, 16)
[A016159(n) for n in range(31)] # G. C. Greubel, Nov 11 2024
CROSSREFS
Sequence in context: A046088 A186853 A378484 * A297370 A285167 A283694
KEYWORD
nonn
EXTENSIONS
More terms added by G. C. Greubel, Nov 11 2024
STATUS
approved