OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (12,-35).
FORMULA
From R. J. Mathar, Sep 18 2008: (Start)
a(n) = (7^(n+1) - 5^(n+1))/2 = A081200(n+1).
Binomial transform of A080962. (End)
a(n) = 7*a(n-1) + 5^n. - Vincenzo Librandi, Feb 09 2011
E.g.f.: exp(5*x)*(7*exp(2*x) - 5)/2. - Stefano Spezia, Oct 25 2023
MATHEMATICA
CoefficientList[Series[1/((1-5x)(1-7x)), {x, 0, 30}], x] (* or *) LinearRecurrence[ {12, -35}, {1, 12}, 30] (* Harvey P. Dale, Nov 16 2021 *)
PROG
(PARI) Vec(1/((1-5*x)*(1-7*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
(Magma) [n le 2 select 12^(n-1) else 12*Self(n-1) -35*Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 09 2024
(SageMath)
A016161=BinaryRecurrenceSequence(12, -35, 1, 12)
[A016161(n) for n in range(31)] # G. C. Greubel, Nov 09 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved