login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016161
Expansion of g.f. 1/((1-5*x)*(1-7*x)).
11
1, 12, 109, 888, 6841, 51012, 372709, 2687088, 19200241, 136354812, 964249309, 6798573288, 47834153641, 336059778612, 2358521965909, 16540171339488, 115933787267041, 812299450322412, 5689910849522509
OFFSET
0,2
COMMENTS
Also, this is the number of incongruent integer-edged Heron triangles whose circumdiameter is the product of n distinct primes each of shape 4k + 1. Cf. A003462, A109021. - R. K. Guy, Jan 31 2007
FORMULA
From R. J. Mathar, Sep 18 2008: (Start)
a(n) = (7^(n+1) - 5^(n+1))/2 = A081200(n+1).
Binomial transform of A080962. (End)
a(n) = 7*a(n-1) + 5^n. - Vincenzo Librandi, Feb 09 2011
E.g.f.: exp(5*x)*(7*exp(2*x) - 5)/2. - Stefano Spezia, Oct 25 2023
MATHEMATICA
CoefficientList[Series[1/((1-5x)(1-7x)), {x, 0, 30}], x] (* or *) LinearRecurrence[ {12, -35}, {1, 12}, 30] (* Harvey P. Dale, Nov 16 2021 *)
PROG
(PARI) Vec(1/((1-5*x)*(1-7*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
(Magma) [n le 2 select 12^(n-1) else 12*Self(n-1) -35*Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 09 2024
(SageMath)
A016161=BinaryRecurrenceSequence(12, -35, 1, 12)
[A016161(n) for n in range(31)] # G. C. Greubel, Nov 09 2024
KEYWORD
nonn,easy
STATUS
approved