login
A016165
Expansion of 1/((1-5*x)*(1-11*x)).
3
1, 16, 201, 2336, 26321, 292656, 3234841, 35661376, 392665761, 4321276496, 47543807081, 523030706016, 5753581906801, 63290621677936, 696202941972921, 7658262879280256, 84241044259973441, 926652249799160976
OFFSET
0,2
FORMULA
a(n) = (11^(n+1) - 5^(n+1))/6. - Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009
a(n) = 11*a(n-1) + 5^n, a(0)=1. - Vincenzo Librandi, Feb 09 2011
E.g.f.: (1/6)*(11*exp(11*x) - 5*exp(5*x)). - G. C. Greubel, Nov 10 2024
MATHEMATICA
Table[(11^(n+1)-5^(n+1))/6, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011 *)
CoefficientList[Series[1/((1-5x)(1-11x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{16, -55}, {1, 16}, 30] (* Harvey P. Dale, Nov 24 2021 *)
PROG
(Magma) [n le 2 select 16^(n-1) else 16*Self(n-1) -55*Self(n-2): n in [1..31]]; // G. C. Greubel, Nov 10 2024
(SageMath)
A016165=BinaryRecurrenceSequence(16, -55, 1, 16)
[A016165(n) for n in range(31)] # G. C. Greubel, Nov 10 2024
CROSSREFS
Cf. A016161.
Sequence in context: A154348 A129333 A001810 * A282834 A144632 A221825
KEYWORD
nonn
STATUS
approved