|
|
A186853
|
|
Number of 4-step knight's tours on a (n+2)X(n+2) board summed over all starting positions
|
|
0
|
|
|
16, 208, 976, 2576, 5056, 8320, 12368, 17200, 22816, 29216, 36400, 44368, 53120, 62656, 72976, 84080, 95968, 108640, 122096, 136336, 151360, 167168, 183760, 201136, 219296, 238240, 257968, 278480, 299776, 321856, 344720, 368368, 392800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Row 4 of A186851
|
|
LINKS
|
Table of n, a(n) for n=1..33.
|
|
FORMULA
|
Empirical: a(n) = 392*n^2 - 1048*n + 496 for n>3
|
|
EXAMPLE
|
Some solutions for 5X5
..0..1..0..0..0....0..3..0..0..0....0..0..0..0..0....0..0..1..0..0
..0..0..3..0..0....0..0..0..0..0....0..0..0..0..1....4..0..0..0..2
..2..0..0..0..4....4..0..2..0..0....4..0..0..0..0....0..0..3..0..0
..0..0..0..0..0....0..0..0..0..0....0..0..0..2..0....0..0..0..0..0
..0..0..0..0..0....0..0..0..1..0....0..3..0..0..0....0..0..0..0..0
|
|
CROSSREFS
|
Sequence in context: A016217 A055758 A046088 * A016159 A297370 A285167
Adjacent sequences: A186850 A186851 A186852 * A186854 A186855 A186856
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin Feb 27 2011
|
|
STATUS
|
approved
|
|
|
|