login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248340
a(n) = 10^n - 5^n.
1
0, 5, 75, 875, 9375, 96875, 984375, 9921875, 99609375, 998046875, 9990234375, 99951171875, 999755859375, 9998779296875, 99993896484375, 999969482421875, 9999847412109375, 99999237060546875, 999996185302734375, 9999980926513671875
OFFSET
0,2
FORMULA
G.f.: 5*x/((1-5*x)*(1-10*x)).
a(n) = 15*a(n-1) - 50*a(n-2).
a(n) = 5^n*(2^n-1) = A000351(n) * A000225(n) = A011557(n) - A000351(n).
a(n) = 5*A016164(n-1).
a(n) = A016164(n) - A011557(n).
E.g.f.: exp(10*x) - exp(5*x). - G. C. Greubel, Nov 13 2024
MATHEMATICA
Table[10^n - 5^n, {n, 0, 30}]
CoefficientList[Series[5 x/((1-5 x)(1-10 x)), {x, 0, 30}], x]
PROG
(Magma) [10^n-5^n: n in [0..30]];
(Python)
def A248340(n): return pow(10, n) - pow(5, n)
print([A248340(n) for n in range(41)]) # G. C. Greubel, Nov 13 2024
CROSSREFS
Cf. sequences of the form k^n-5^n: A005062 (k=6), A121213 (k=7), A191468 (k=8), A191466 (k=9), this sequence (k=10), A139743 (k=11).
Sequence in context: A105494 A030986 A284924 * A224088 A219462 A091882
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 05 2014
STATUS
approved