

A030986


3automorphic numbers ending in 5: final digits of 3*n^2 agree with n.


1



5, 75, 875, 6875, 96875, 296875, 4296875, 4296875, 404296875, 9404296875, 39404296875, 639404296875, 6639404296875, 86639404296875, 86639404296875, 2086639404296875, 52086639404296875
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 5^n and 3*a(n)  1 is divisible by 2^n.  Eric M. Schmidt, Aug 18 2012


LINKS

Eric M. Schmidt, Table of n, a(n) for n = 1..1000
Index entries for sequences related to automorphic numbers
Index entries for sequences related to final digits of numbers
Eric Weisstein's World of Mathematics, Automorphic Number


PROG

(Sage) [crt(inverse_mod(3, 2^n), 0, 2^n, 5^n) for n in range(1, 1001)] # Eric M. Schmidt, Aug 18 2012


CROSSREFS

Sequence in context: A105490 A307823 A105494 * A284924 A248340 A224088
Adjacent sequences: A030983 A030984 A030985 * A030987 A030988 A030989


KEYWORD

nonn,base


AUTHOR

Eric W. Weisstein


STATUS

approved



