|
|
A030984
|
|
2-automorphic numbers: final digits of 2*n^2 agree with n.
|
|
1
|
|
|
8, 88, 688, 4688, 54688, 554688, 3554688, 93554688, 893554688, 893554688, 40893554688, 40893554688, 40893554688, 70040893554688, 870040893554688, 1870040893554688, 71870040893554688, 871870040893554688
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 2^n and 2*a(n) - 1 is divisible by 5^n. - Eric M. Schmidt, Aug 18 2012
|
|
LINKS
|
Eric M. Schmidt, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Automorphic Number
Index entries for sequences related to automorphic numbers
Index entries for sequences related to final digits of numbers
|
|
PROG
|
(Sage) [crt(0, (5^n + 1)/2, 2^n, 5^n) for n in range(1, 1001)] # Eric M. Schmidt, Aug 18 2012
|
|
CROSSREFS
|
Sequence in context: A299671 A299749 A300263 * A109021 A271939 A043043
Adjacent sequences: A030981 A030982 A030983 * A030985 A030986 A030987
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Eric W. Weisstein
|
|
STATUS
|
approved
|
|
|
|