login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030982
Number of noncrossing nonplanted bushes with n nodes, i.e., rooted noncrossing trees with n nodes and no nodes of degree 1.
1
0, 1, 1, 7, 18, 80, 284, 1169, 4628, 19137, 79165, 333058, 1410608, 6029816, 25941384, 112315945, 488862888, 2138161043, 9391903131, 41414729419, 183264846010, 813564012660, 3622193670040, 16170171489820, 72364908958800, 324586284275500, 1458976377988636
OFFSET
1,4
FORMULA
a(n) = 5*Sum_{k=2..n} ((-1)^(n-k)*2^(n-k)*k*C(n,k)*C(3*k-2,k-2)/(2*k+1))/n.
Recurrence: 2*n*(2*n+1)*a(n) = (n-1)*(11*n-12)*a(n-1) + 6*(9*n^2-21*n+8) * a(n-2) - 4*(n-3)*(11*n-56)*a(n-3) - 152*(n-4)*(n-3)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 5*19^(n+1/2)/(27*sqrt(Pi)*4^(n+1)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012
a(n) = A030981(n) - A030980(n). - Andrew Howroyd, Nov 12 2017
MATHEMATICA
Table[5*Sum[(-1)^(n-k)*2^(n-k)*k*Binomial[n, k]*Binomial[3*k-2, k-2]/ (2*k+1), {k, 2, n}]/n, {n, 1, 20}] (* Vaclav Kotesovec, Oct 24 2012 *)
PROG
(PARI) a(n) = 5*sum(k=2, n, (-1)^(n-k)*2^(n-k)*k*binomial(n, k)*binomial(3*k-2, k-2)/(2*k+1))/n; \\ Andrew Howroyd, Nov 12 2017
CROSSREFS
Sequence in context: A019534 A024830 A262489 * A203381 A207158 A304992
KEYWORD
nonn,easy
STATUS
approved