login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030981
Number of noncrossing bushes with n nodes; i.e., rooted noncrossing trees with n nodes and no nonroot nodes of degree 1.
4
1, 1, 4, 11, 41, 146, 564, 2199, 8835, 35989, 148912, 623008, 2633148, 11222160, 48181056, 208180847, 904593623, 3950338043, 17328256180, 76316518987, 337332601513, 1495992837550, 6654367576732, 29681131861564
OFFSET
1,3
FORMULA
a(n) = Sum_{k=1..n} ((-1)^(n-k)*2^(n-k)*binomial(n, k)*binomial(3*k, k-1))/n.
G.f.: A(z) satisfies z*A(z)^3 + 3z*A(z)^2 + z*A(z) - A(z) + z = 0.
Recurrence: 2*n*(2*n+1)*a(n) = (n+2)*(3*n-1)*a(n-1) + 4*(n-2)*(15*n-13)*a(n-2) + 76*(n-3)*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 19^(n+1/2)/(3*sqrt(Pi)*n^(3/2)*2^(2*n+2)). - Vaclav Kotesovec, Oct 08 2012
a(n) = (-1)^(n+1)*2^(n-1)*hypergeom([4/3, 5/3, 1-n], [2, 5/2], 27/8). - Peter Luschny, Aug 03 2017
MAPLE
a := n -> (-1)^(n + 1)*2^(n - 1)*hypergeom([4/3, 5/3, 1 - n], [2, 5/2], 27/8):
seq(simplify(a(n)), n=1..24); # Peter Luschny, Aug 03 2017
MATHEMATICA
Table[Sum[(-1)^(n-k)*2^(n-k)*Binomial[n, k]*Binomial[3*k, k-1], {k, 1, n}]/n, {n, 1, 25}] (* Vaclav Kotesovec, Oct 08 2012 *)
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(n-k)*2^(n-k)*binomial(n, k)*binomial(3*k, k-1))/n; \\ Andrew Howroyd, Nov 12 2017
CROSSREFS
Column k=0 of A101449.
Sequence in context: A047091 A121092 A281346 * A151455 A149269 A149270
KEYWORD
nonn,easy
STATUS
approved