Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Jun 28 2021 16:08:53
%S 1,1,4,11,41,146,564,2199,8835,35989,148912,623008,2633148,11222160,
%T 48181056,208180847,904593623,3950338043,17328256180,76316518987,
%U 337332601513,1495992837550,6654367576732,29681131861564
%N Number of noncrossing bushes with n nodes; i.e., rooted noncrossing trees with n nodes and no nonroot nodes of degree 1.
%H Vincenzo Librandi, <a href="/A030981/b030981.txt">Table of n, a(n) for n = 1..1000</a>
%H Paul Barry, <a href="https://arxiv.org/abs/2104.01644">Centered polygon numbers, heptagons and nonagons, and the Robbins numbers</a>, arXiv:2104.01644 [math.CO], 2021.
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F a(n) = Sum_{k=1..n} ((-1)^(n-k)*2^(n-k)*binomial(n, k)*binomial(3*k, k-1))/n.
%F G.f.: A(z) satisfies z*A(z)^3 + 3z*A(z)^2 + z*A(z) - A(z) + z = 0.
%F Recurrence: 2*n*(2*n+1)*a(n) = (n+2)*(3*n-1)*a(n-1) + 4*(n-2)*(15*n-13)*a(n-2) + 76*(n-3)*(n-2)*a(n-3). - _Vaclav Kotesovec_, Oct 08 2012
%F a(n) ~ 19^(n+1/2)/(3*sqrt(Pi)*n^(3/2)*2^(2*n+2)). - _Vaclav Kotesovec_, Oct 08 2012
%F a(n) = (-1)^(n+1)*2^(n-1)*hypergeom([4/3, 5/3, 1-n], [2, 5/2], 27/8). - _Peter Luschny_, Aug 03 2017
%p a := n -> (-1)^(n + 1)*2^(n - 1)*hypergeom([4/3, 5/3, 1 - n], [2, 5/2], 27/8):
%p seq(simplify(a(n)), n=1..24); # _Peter Luschny_, Aug 03 2017
%t Table[Sum[(-1)^(n-k)*2^(n-k)*Binomial[n, k]*Binomial[3*k, k-1],{k,1,n}]/n,{n,1,25}] (* _Vaclav Kotesovec_, Oct 08 2012 *)
%o (PARI) a(n) = sum(k=1, n, (-1)^(n-k)*2^(n-k)*binomial(n, k)*binomial(3*k, k-1))/n; \\ _Andrew Howroyd_, Nov 12 2017
%Y Column k=0 of A101449.
%K nonn,easy
%O 1,3
%A _Emeric Deutsch_