OFFSET
0,3
COMMENTS
In other words, independence number of the n X n knight graph. - Eric W. Weisstein, May 05 2017
REFERENCES
H. E. Dudeney, The Knight-Guards, #319 in Amusements in Mathematics; New York: Dover, p. 95, 1970.
J. S. Madachy, Madachy's Mathematical Recreations, New York, Dover, pp. 38-39 1979.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 751.
Eric Weisstein's World of Mathematics, Independence Number
Eric Weisstein's World of Mathematics, Knight Graph
Eric Weisstein's World of Mathematics, Knights Problem
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
a(n) = 4 if n = 2, n^2/2 if n even > 2, (n^2+1)/2 if n odd > 1.
a(n) = 4 if n = 2, (1 + (-1)^(1 + n) + 2 n^2)/4 otherwise.
G.f.: x*(2*x^5-4*x^4+3*x^2-2*x-1) / ((x-1)^3*(x+1)). [Colin Barker, Jan 09 2013]
MATHEMATICA
CoefficientList[Series[x (2 x^5 - 4 x^4 + 3 x^2 - 2 x - 1)/((x - 1)^3 (x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 19 2013 *)
Join[{0, 1, 4}, Table[If[EvenQ[n], n^2/2, (n^2 + 1)/2], {n, 3, 60}]] (* Harvey P. Dale, Nov 28 2014 *)
Join[{0, 1, 4}, LinearRecurrence[{2, 0, -2, 1}, {5, 8, 13, 18}, 60]] (* Harvey P. Dale, Nov 28 2014 *)
Table[If[n == 2, 4, (1 - (-1)^n + 2 n^2)/4], {n, 20}] (* Eric W. Weisstein, May 05 2017 *)
Table[Length[FindIndependentVertexSet[KnightTourGraph[n, n]][[1]]], {n, 20}] (* Eric W. Weisstein, Jun 27 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Erich Friedman
Definition clarified by Vaclav Kotesovec, Sep 16 2014
STATUS
approved