login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030978
Maximal number of non-attacking knights on an n X n board.
11
0, 1, 4, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, 85, 98, 113, 128, 145, 162, 181, 200, 221, 242, 265, 288, 313, 338, 365, 392, 421, 450, 481, 512, 545, 578, 613, 648, 685, 722, 761, 800, 841, 882, 925, 968, 1013, 1058, 1105, 1152, 1201, 1250, 1301, 1352, 1405
OFFSET
0,3
COMMENTS
In other words, independence number of the n X n knight graph. - Eric W. Weisstein, May 05 2017
REFERENCES
H. E. Dudeney, The Knight-Guards, #319 in Amusements in Mathematics; New York: Dover, p. 95, 1970.
J. S. Madachy, Madachy's Mathematical Recreations, New York, Dover, pp. 38-39 1979.
LINKS
V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 751.
Eric Weisstein's World of Mathematics, Independence Number
Eric Weisstein's World of Mathematics, Knight Graph
Eric Weisstein's World of Mathematics, Knights Problem
FORMULA
a(n) = 4 if n = 2, n^2/2 if n even > 2, (n^2+1)/2 if n odd > 1.
a(n) = 4 if n = 2, (1 + (-1)^(1 + n) + 2 n^2)/4 otherwise.
G.f.: x*(2*x^5-4*x^4+3*x^2-2*x-1) / ((x-1)^3*(x+1)). [Colin Barker, Jan 09 2013]
MATHEMATICA
CoefficientList[Series[x (2 x^5 - 4 x^4 + 3 x^2 - 2 x - 1)/((x - 1)^3 (x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 19 2013 *)
Join[{0, 1, 4}, Table[If[EvenQ[n], n^2/2, (n^2 + 1)/2], {n, 3, 60}]] (* Harvey P. Dale, Nov 28 2014 *)
Join[{0, 1, 4}, LinearRecurrence[{2, 0, -2, 1}, {5, 8, 13, 18}, 60]] (* Harvey P. Dale, Nov 28 2014 *)
Table[If[n == 2, 4, (1 - (-1)^n + 2 n^2)/4], {n, 20}] (* Eric W. Weisstein, May 05 2017 *)
Table[Length[FindIndependentVertexSet[KnightTourGraph[n, n]][[1]]], {n, 20}] (* Eric W. Weisstein, Jun 27 2017 *)
CROSSREFS
Agrees with A000982 for n>1.
Cf. A244081.
Sequence in context: A133940 A174398 A341420 * A101948 A348484 A087475
KEYWORD
nonn,easy
EXTENSIONS
More terms from Erich Friedman
Definition clarified by Vaclav Kotesovec, Sep 16 2014
STATUS
approved