OFFSET
1,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} ((-1)^(n-k)*2^(n-k)*binomial(n, k)*binomial(3*k-2, k-1))/n.
G.f.: A(z) satisfies A(z)^3 + 2z*A(z)^3 - 2A(z)^2 - 4z*A(z)^2 + A(z) + 2z*A - z = 0.
D-finite with recurrence -2*n*(2*n-1)*a(n) +3*n*(n-2)*a(n-1) +30*(2*n-3)*(n-2)*a(n-2) +76*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Jul 24 2022
PROG
(PARI) a(n) = sum(k=1, n, ((-1)^(n-k)*2^(n-k)*binomial(n, k)*binomial(3*k-2, k-1))/n) \\ Michel Marcus, Aug 03 2017
(PARI) seq(n)={Vec(serreverse(x/(1/(1 -x)^2 - 2*x) + O(x*x^n)))} \\ Andrew Howroyd, Nov 21 2024
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
EXTENSIONS
a(25) onwards from Andrew Howroyd, Nov 21 2024
STATUS
approved