This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002351 Denominators of convergents to cube root of 2. (Formerly M2380 N0945) 3
 1, 3, 4, 23, 27, 50, 227, 277, 504, 4309, 4813, 71691, 76504, 836731, 1749966, 2586697, 12096754, 147747745, 307592244, 1070524477, 2448641198, 3519165675, 13006138223, 55543718567, 68549856790, 124093575357, 316737007504 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67. P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Robert Israel, Table of n, a(n) for n = 1..1976 E. Bombieri and A. J. van der Poorten, Continued fractions of algebraic numbers, In: Bosma W., van der Poorten A. (eds) Computational Algebra and Number Theory. Mathematics and Its Applications, vol 325. E. B. Burger, Diophantine Olympics and World Champions: Polynomials and Primes Down Under, Amer. Math. Monthly, 107 (Nov. 2000), 822-829. MAPLE Digits := 60: E := 2^(1/3); convert(evalf(E), confrac, 50, 'cvgts'): cvgts; # Alternate: N:= 100: # to get a(1) to a(N) c[0] := 1: p[0] := 1: a[0] := 0: p[1] := 1: a[1] := 1: for n from 1 to N do   c[n] := floor((-1)^(n)*3*p[n]^2/(a[n]*(p[n]^3-2*a[n]^3)) - a[n-1]/a[n]);   p[n+1] := c[n]*p[n] + p[n-1];   a[n+1] := c[n]*a[n] + a[n-1]; od: seq(a[i], i=1..N); # Robert Israel, Oct 08 2017 MATHEMATICA Denominator[Convergents[Surd[2, 3], 30]] (* Harvey P. Dale, Apr 02 2018 *) CROSSREFS Cf. A002352, A002945. Sequence in context: A163744 A221643 A042595 * A042035 A030980 A041861 Adjacent sequences:  A002348 A002349 A002350 * A002352 A002353 A002354 KEYWORD nonn,frac AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 14:47 EDT 2019. Contains 328114 sequences. (Running on oeis4.)