The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219462 a(n) = Sum_{k = 1..2*n} binomial(2*n,k) * Fibonacci(2*k). 1
 0, 5, 75, 1000, 13125, 171875, 2250000, 29453125, 385546875, 5046875000, 66064453125, 864794921875, 11320312500000, 148184814453125, 1939764404296875, 25391845703125000, 332383575439453125, 4350957489013671875, 56954772949218750000, 745547657012939453125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..500 Doron Zeilbeger, An Enquiry Concerning Human (and Computer!) [Mathematical] Understanding, (2007); page 10. Index entries for linear recurrences with constant coefficients, signature (15,-25). FORMULA a(n) = Sum_{k=1..n} A034870(n,k)*A001906(k). a(n) = 5^n * Fibonacci(2*n) = A000351(n) * A001906(n). G.f.: 5*x/(25*x^2-15*x+1). - Colin Barker, Dec 03 2012 E.g.f.: 2*exp(15*x/2)*sinh(5*sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Oct 19 2023 MATHEMATICA Table[Sum[Binomial[2n, k]Fibonacci[2k], {k, 2n}], {n, 0, 20}] (* Harvey P. Dale, Aug 26 2017 *) PROG (Haskell) a219462 = sum . zipWith (*) a001906_list . a034870_row (PARI) a(n) = sum(k = 1, 2*n, binomial(2*n, k) * fibonacci(2*k)); \\ Michel Marcus, Jan 26 2022 CROSSREFS Cf. A000045, A000351, A001906, A007318, A034870, A036291, A087453. Sequence in context: A284924 A248340 A224088 * A091882 A034688 A238608 Adjacent sequences: A219459 A219460 A219461 * A219463 A219464 A219465 KEYWORD nonn,easy AUTHOR Reinhard Zumkeller, Nov 20 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 7 19:14 EDT 2024. Contains 375749 sequences. (Running on oeis4.)