login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219465
Number of n X 2 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 n X 2 array.
1
4, 23, 82, 239, 619, 1471, 3259, 6800, 13464, 25453, 46178, 80755, 136643, 224449, 358927, 560200, 855236, 1279611, 1879594, 2714591, 3859987, 5410427, 7483579, 10224424, 13810120, 18455489, 24419178, 32010547, 41597339, 53614189, 68572031
OFFSET
1,1
COMMENTS
Column 2 of A219471.
LINKS
FORMULA
Empirical: a(n) = (1/20160)*n^8 + (1/1260)*n^7 + (1/480)*n^6 + (4/45)*n^5 - (11/960)*n^4 + (277/180)*n^3 + (7607/5040)*n^2 + (61/70)*n.
Conjectures from Colin Barker, Jul 26 2018: (Start)
G.f.: x*(4 - 13*x + 19*x^2 - 7*x^3 - 8*x^4 + 10*x^5 - 2*x^6 - x^7) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
EXAMPLE
Some solutions for n=3:
..2..2....0..0....1..1....1..1....2..2....1..1....1..1....0..0....1..1....1..1
..0..0....1..1....0..0....1..1....0..0....1..1....1..1....0..1....1..1....2..2
..0..1....3..3....0..3....0..0....0..3....1..3....1..2....0..0....3..3....2..3
CROSSREFS
Cf. A219471.
Sequence in context: A304305 A316204 A305771 * A317120 A220647 A014585
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 20 2012
STATUS
approved