login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219466
Number of nX3 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 nX3 array
1
10, 68, 673, 5040, 32229, 185800, 982456, 4815782, 22059734, 95049799, 387398157, 1500899485, 5551333536, 19675267097, 67041131529, 220243855894, 699365511947, 2151361250171, 6423848162633, 18651881494908, 52745972542258
OFFSET
1,1
COMMENTS
Column 3 of A219471
LINKS
FORMULA
Empirical: a(n) = (1/523022617466601111760007224100074291200000000)*n^38 + (1/887984070401699680407482553650380800000000)*n^37 + (211/743986653579802434935998896301670400000000)*n^36 + (37/901802004339154466589089571274752000000)*n^35 + (23431/5904655980792082816952372192870400000000)*n^34 + (751/2566497818368045269611288985600000000)*n^33 + (18234521/994634563609361544032084085964800000000)*n^32 + (1202479/1177082323798060998854537379840000000)*n^31 + (3257916313/64169971845765260905295747481600000000)*n^30 + (15998577713/7129996871751695656143971942400000000)*n^29 + (34241128937/386354510291963804027505868800000000)*n^28 + (35548456637/11038700294056108686500167680000000)*n^27 + (10947288367751/101418058951640498557220290560000000)*n^26 + (237907312593869/73758588328465817132523847680000000)*n^25 + (71600877671657743/811344471613123988457762324480000000)*n^24 + (122707098285448223/54089631440874932563850821632000000)*n^23 + (3671970390070217/70641033314117766862602240000000)*n^22 + (1589133646897620433/1483461699596473104114647040000000)*n^21 + (264925397893974283417499/12429925580918848139376627548160000000)*n^20 + (3615125506802045691703/10064717069569917521762451456000000)*n^19 + (99834558409326312420878167/17990681761856227570150381977600000000)*n^18 + (8082599270771039606958097/88189616479687390049756774400000000)*n^17 + (40084616932042931244243721/48294313786495475503438233600000000)*n^16 + (82210406612645728578527/5375990402949403581087744000000)*n^15 + (77521233231877746972047550487/760635442137303739179152179200000000)*n^14 + (318314789653271743306315093267/190158860534325934794788044800000000)*n^13 - (158292888536859409403815888861/17287169139484175890435276800000000)*n^12 + (70868942634763610614565096827/128053104736919821410631680000000)*n^11 - (28239949688137362945250580263751/3978792897182865879544627200000000)*n^10 + (1250965614347251807731812019833/15788860703106610633113600000000)*n^9 - (23380069818927909043317980888257301/43969345581368059511449190400000000)*n^8 + (1533222352111813385357485885877/454604482851199953592320000000)*n^7 - (2368130301559082421877403072112469/97327978500424090064405760000000)*n^6 + (1758899229989365280437101191329/9040100174194737263616000000)*n^5 - (28115613360169956438589192637861/24718216762012467317944320000)*n^4 + (20392529937699678379400434687/4904408087700886372608000)*n^3 - (1495340558417657393233035721/177684955970610344256000)*n^2 + (3623955459298340527/485721041551200)*n - 732 for n>5
EXAMPLE
Some solutions for n=3
..1..1..1....0..0..1....0..0..2....0..0..1....0..0..1....0..0..0....0..0..0
..1..1..2....1..1..2....0..0..0....0..0..2....0..0..3....0..0..3....0..0..3
..2..2..2....3..0..0....3..0..2....2..2..2....2..2..3....2..1..1....1..0..0
CROSSREFS
Sequence in context: A026901 A027242 A081656 * A330352 A321060 A026958
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 20 2012
STATUS
approved