login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081656
a(n) = 2*6^n - 2^n.
4
1, 10, 68, 424, 2576, 15520, 93248, 559744, 3358976, 20154880, 120931328, 725592064, 4353560576, 26121379840, 156728311808, 940369936384, 5642219749376, 33853318758400, 203119913074688, 1218719479496704, 7312316879077376, 43873901278658560, 263243407680339968
OFFSET
0,2
COMMENTS
Binomial transform of A081655.
Inverse binomial transform of A081657.
FORMULA
G.f.: (1+2*x)/((1-6*x)(1-2*x)).
E.g.f.: 2*exp(6*x) - exp(2*x).
a(0)=1, a(2)=10; for n>2, a(n) = 8*a(n-1) - 12*a(n-2). - Vincenzo Librandi, Aug 10 2013
MATHEMATICA
CoefficientList[Series[(1 + 2 x) / ((1 - 6 x) (1 - 2 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 10 2013 *)
Table[2*6^n-2^n, {n, 0, 20}] (* or *) LinearRecurrence[{8, -12}, {1, 10}, 20] (* Harvey P. Dale, Mar 17 2019 *)
PROG
(Magma) [2*6^n-2^n: n in [0..30]]; // Vincenzo Librandi, Aug 10 2013
(PARI) a(n)=2*6^n-2^n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Third column of array A094424.
Sequence in context: A104598 A026901 A027242 * A219466 A330352 A321060
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 26 2003
STATUS
approved