OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4).
FORMULA
a(0)=1, a(n) = 2*4^n, n>0
G.f.: (1+4*x)/(1-4*x).
E.g.f. 2*exp(4*x)-1.
With interpolated zeros, this is 2^n - 0^n + (-2)^n. - Paul Barry, Sep 06 2003
a(n) = A081294(n+1), n>0. - R. J. Mathar, Sep 17 2008
For n>0, a(n) = 2 * (1 + 3^(n-1) + Sum{x=1..n-2}Sum{k=0..x-1}(binomial(x-1,k)*(3^(k+1) + 3^(n-x+k)))). - J. Conrad, Dec 10 2015
EXAMPLE
a(0) = 2*4^0 - 0^0 = 2 - 1 = 1 (use 0^0 = 1).
MATHEMATICA
CoefficientList[Series[(1 + 4 x) / (1 - 4 x), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 10 2013 *)
PROG
(PARI) a(n)=2*4^n-0^n \\ Charles R Greathouse IV, Apr 09 2012
(Magma) [2*4^n-0^n: n in [0..30]]; // Vincenzo Librandi, Aug 10 2013
(PARI) x='x+O('x^100); Vec((1+4*x)/(1-4*x)) \\ Altug Alkan, Dec 14 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 26 2003
STATUS
approved