login
A358252
a(n) is the least number with exactly n non-unitary square divisors.
4
1, 8, 32, 128, 288, 864, 1152, 2592, 4608, 13824, 10368, 20736, 28800, 41472, 64800, 279936, 115200, 331776, 345600, 663552, 259200, 1679616, 518400, 1620000, 1166400, 4860000, 1036800, 17915904, 2073600, 15552000, 6998400, 26873856, 4147200, 53747712, 8294400
OFFSET
0,2
COMMENTS
a(n) is the least number k such that A056626(k) = n.
Since A056626(k) depends only on the prime signature of k, all the terms of this sequence are in A025487.
LINKS
EXAMPLE
a(1) = 8 since 8 is the least number that has exactly one non-unitary square divisor, 4.
MATHEMATICA
f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[21, 10^6]
PROG
(PARI) s(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + floor(f[i, 2]/2)) - 2^sum(i = 1, #f~, 1 - f[i, 2]%2); }
lista(len, nmax) = {my(v = vector(len), c = 0, n = 1, i); while(c < len && n < nmax, i = s(n) + 1; if(i <= len && v[i] == 0, c++; v[i] = n); n++); v};
CROSSREFS
Similar sequences: A005179 (all divisors), A038547 (odd divisors), A085629 (coreful divisors), A130279 (square), A187941 (even), A309181 (non-unitary), A340232 (bi-unitary), A340233 (exponential), A357450 (odd square).
Sequence in context: A357789 A363333 A358253 * A374159 A325839 A081654
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 05 2022
STATUS
approved