login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358252
a(n) is the least number with exactly n non-unitary square divisors.
4
1, 8, 32, 128, 288, 864, 1152, 2592, 4608, 13824, 10368, 20736, 28800, 41472, 64800, 279936, 115200, 331776, 345600, 663552, 259200, 1679616, 518400, 1620000, 1166400, 4860000, 1036800, 17915904, 2073600, 15552000, 6998400, 26873856, 4147200, 53747712, 8294400
OFFSET
0,2
COMMENTS
a(n) is the least number k such that A056626(k) = n.
Since A056626(k) depends only on the prime signature of k, all the terms of this sequence are in A025487.
LINKS
EXAMPLE
a(1) = 8 since 8 is the least number that has exactly one non-unitary square divisor, 4.
MATHEMATICA
f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[21, 10^6]
PROG
(PARI) s(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + floor(f[i, 2]/2)) - 2^sum(i = 1, #f~, 1 - f[i, 2]%2); }
lista(len, nmax) = {my(v = vector(len), c = 0, n = 1, i); while(c < len && n < nmax, i = s(n) + 1; if(i <= len && v[i] == 0, c++; v[i] = n); n++); v};
CROSSREFS
Similar sequences: A005179 (all divisors), A038547 (odd divisors), A085629 (coreful divisors), A130279 (square), A187941 (even), A309181 (non-unitary), A340232 (bi-unitary), A340233 (exponential), A357450 (odd square).
Sequence in context: A357789 A363333 A358253 * A374159 A325839 A379593
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 05 2022
STATUS
approved