login
A340232
a(n) is the least number with exactly 2*n bi-unitary divisors.
6
2, 6, 32, 24, 512, 96, 8192, 120, 131072, 1536, 2097152, 480, 33554432, 24576, 536870912, 840, 8589934592, 7776, 137438953472, 7680, 2199023255552, 6291456, 35184372088832, 3360, 562949953421312, 100663296, 9007199254740992, 122880, 144115188075855872, 124416
OFFSET
1,1
COMMENTS
Every integer except 1 has an even number of bi-unitary divisors.
LINKS
FORMULA
A286324(a(n)) = 2*n and A286324(k) != 2*n for all k < a(n).
EXAMPLE
a(1) = 2 since 2 is the least number with 2*1 = 2 bi-unitary divisors, 1 and 2.
a(2) = 6 since 6 is the least number with 2*2 = 4 bi-unitary divisors, 1, 2, 3 and 6.
MATHEMATICA
f[p_, e_] := If[OddQ[e], e + 1, e]; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); max = 10; s = Table[0, {max}]; c = 0; n = 2; While[c < max, i = d[n]/2; If[i <= max && s[[i]] == 0, c++; s[[i]] = n]; n++]; s
CROSSREFS
Subsequence of A025487.
Similar sequences: A005179 (all divisors), A038547 (odd divisors), A085629 (coreful divisors), A309181 (nonunitary), A340233 (exponential).
Sequence in context: A342396 A376052 A190958 * A109243 A223586 A212762
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jan 01 2021
STATUS
approved