login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A286324
a(n) is the number of bi-unitary divisors of n.
38
1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 6, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 6, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4, 8, 2, 8
OFFSET
1,2
COMMENTS
a(n) is the number of terms of the n-th row of A222266.
LINKS
D. Suryanarayana, The number of bi-unitary divisors of an integer, in The Theory of Arithmetic Functions pp 273-282, Lecture Notes in Mathematics book series (LNM, volume 251).
Eric Weisstein's World of Mathematics, Biunitary Divisor.
FORMULA
Multiplicative with a(p^e) = e + (e mod 2). - Andrew Howroyd, Aug 05 2018
a(A340232(n)) = 2*n. - Bernard Schott, Mar 12 2023
a(n) = A000005(A350390(n)) (the number of divisors of the largest exponentially odd number dividing n). - Amiram Eldar, Sep 01 2023
From Vaclav Kotesovec, Jan 11 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - (p^s - 1)/((p^s + 1)*p^(2*s))).
Let f(s) = Product_{p prime} (1 - (p^s - 1)/((p^s + 1)*p^(2*s))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (p-1)/((p+1)*p^2)) = A306071 = 0.80733082163620503914865427993003113402584582508155664401800520770441381...,
f'(1) = f(1) * Sum_{p prime} 2*(p^2 - p - 1) * log(p) /(p^4 + 2*p^3 + 1) = f(1) * 0.40523703144422392508596509911218523410441417240419849262346362977537989... = f(1) * A306072
and gamma is the Euler-Mascheroni constant A001620. (End)
EXAMPLE
From Michael De Vlieger, May 07 2017: (Start)
a(1) = 1 since 1 is the empty product; all divisors of 1 (i.e., 1) have a greatest common unitary divisor that is 1. 1 is a unitary divisor of all numbers n.
a(p) = 2 since 1 and p have greatest common unitary divisor 1.
a(6) = 4 since the divisor pairs {1, 6} and {2, 3} have greatest common unitary divisor 1.
a(24) = 8 since {1, 24}, {2, 12}, {3, 8}, {4, 6} have greatest unitary divisors {1, {1, 3, 8, 24}}, {{1, 2}, {1, 3, 4, 12}}, {{1, 3}, {1, 8}}, {1, 4}, {1, 2, 3, 6}}: 1 is the greatest common unitary divisor among all 4 pairs.
(End)
MATHEMATICA
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; Table[DivisorSum[n, 1 &, Last@ Intersection[f@ #, f[n/#]] == 1 &], {n, 90}] (* Michael De Vlieger, May 07 2017 *)
f[p_, e_] := If[OddQ[e], e + 1, e]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 120] (* Amiram Eldar, Dec 19 2018 *)
PROG
(PARI) udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
a(n) = #biudivs(n);
(PARI) a(n)={my(f=factor(n)[, 2]); prod(i=1, #f, my(e=f[i]); e + e % 2)} \\ Andrew Howroyd, Aug 05 2018
(PARI) for(n=1, 100, print1(direuler(p=2, n, (X^3 - X^2 + X + 1) / ((X-1)^2 * (X+1)))[n], ", ")) \\ Vaclav Kotesovec, Jan 11 2024
CROSSREFS
Cf. A222266, A188999, A293185 (indices of records), A340232, A350390.
Cf. A000005, A034444 (unitary), A037445 (infinitary).
Sequence in context: A376887 A372381 A331109 * A318472 A186643 A342087
KEYWORD
nonn,easy,mult
AUTHOR
Michel Marcus, May 07 2017
STATUS
approved