OFFSET
1,2
COMMENTS
A divisor d of n is called an "oex divisor" if d=1 or if the highest power d^k dividing n has odd exponent k. a(n) is the number of oex divisors of n.
If q is in A050376, then it is an infinitary divisor of n iff it is an oex divisor of n.
Moreover, every infinitary divisor of n is an oex divisor of n. The converse statement is not generally true.
If d_1 and d_2 are oex divisors of n, then lcm(d_1,d_2) is an oex divisor of n as well.
Not multiplicative: a(2)*a(9) <> a(18), for example. - R. J. Mathar, Mar 25 2012
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
a(n) >= A037445(n).
EXAMPLE
For n=16, the oex divisors are 1, 8 with 8^1|16, and 16 with 16^1|16. Therefore, a(16)=3.
MAPLE
highpp := proc(n, d) if n mod d <> 0 then 0; else nshf := n ; a := 0 ; while nshf mod d = 0 do nshf := nshf /d ; a := a+1 ; end do: a; end if; end proc:
isoex := proc(d, n) d= 1 or (n mod d = 0 and type(highpp(n, d), 'odd') ) ; end proc:
A186643 := proc(n) a := 0 ; for d in numtheory[divisors](n) do if isoex(d, n) then a := a+1 ; end if; end do: a ; end proc: # R. J. Mathar, Mar 18 2011
MATHEMATICA
Table[DivisorSum[n, 1 &, Or[# == 1, OddQ@ IntegerExponent[n, #]] &], {n, 80}] (* Michael De Vlieger, May 28 2017 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d==1) || (valuation(n, d) % 2)); \\ Michel Marcus, Feb 06 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Shevelev, Feb 25 2011
STATUS
approved