login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178638
a(n) is the number of divisors d of n such that d^k is not equal to n for any k >= 1.
3
0, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 5, 1, 3, 3, 2, 1, 5, 1, 5, 3, 3, 1, 7, 1, 3, 2, 5, 1, 7, 1, 4, 3, 3, 3, 7, 1, 3, 3, 7, 1, 7, 1, 5, 5, 3, 1, 9, 1, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 11, 1, 3, 5, 3, 3, 7, 1, 5, 3, 7, 1, 11, 1, 3, 5, 5, 3, 7, 1, 9, 2, 3, 1, 11, 3, 3, 3, 7, 1, 11, 3, 5, 3, 3, 3, 11, 1, 5, 5, 7
OFFSET
1,6
LINKS
FORMULA
a(n) = A000005(n) - A089723(n).
a(1) = 0, a(p) = 1, a(pq) = 3, a(pq...z) = 2^k-1, a(p^k) = k+1-A000005(k), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
EXAMPLE
For n = 16, set of such divisors is {1, 8}; a(16) = 2.
MATHEMATICA
Table[DivisorSum[n, 1 &, If[# > 1, #^IntegerExponent[n, #], 1] != n &], {n, 100}] (* Michael De Vlieger, May 27 2017 *)
PROG
(PARI)
A286561(n, k) = if(1==k, 1, valuation(n, k));
A178638(n) = sumdiv(n, d, if((d^A286561(n, d))<>n, 1, 0)); \\ Antti Karttunen, May 26 - 27 2017
(PARI) a(n) = if(n==1, return(0)); my(f=factor(n), g = f[1, 2]); for(i=2, matsize(f)[1], g=gcd(g, f[i, 2])); numdiv(n) - numdiv(g) \\ David A. Corneth, May 27 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 25 2010
STATUS
approved