login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252477
Integer part of 1/(sqrt(prime(n+1))-sqrt(prime(n))).
2
3, 1, 2, 1, 3, 1, 4, 2, 1, 5, 1, 3, 6, 3, 2, 2, 7, 2, 4, 8, 2, 4, 3, 2, 4, 10, 5, 10, 5, 1, 5, 3, 11, 2, 12, 4, 4, 6, 4, 4, 13, 2, 13, 6, 14, 2, 2, 7, 15, 7, 5, 15, 3, 5, 5, 5, 16, 5, 8, 16, 3, 2, 8, 17, 8, 2, 6, 3, 18, 9, 6, 4, 6, 6, 9, 6, 4, 9, 5, 4, 20, 4, 20, 6, 10, 7, 5, 10, 21, 10, 3, 5
OFFSET
1,1
COMMENTS
Andrica's conjecture states that sqrt(prime(n+1))-sqrt(prime(n)) < 1 for all n. Since equality cannot happen, this is equivalent to say that all terms of is sequence are >= 1.
Sequence A074976 is based on the same idea (rounding to the nearest integer instead).
It is a remarkable coincidence(?) that very often, especially around "peaks", a symmetric pattern "x, y, x" occurs: 2, 7, 2,... 10, 5, 10,... 13, 2, 13,... 20, 4, 20, ..., 11, 5, 11, ...
Equal to the integer part of (A000006(n+1)+A000006(n))/(prime(n+1)-prime(n)) for most indices; exceptions are 1, 129, 1667, 2004, 2088, 2334, 3377, 3585, 3695, 3834, 4978, 7057, 7950, 8103, 9525, 9805,...
LINKS
Eric Weisstein's World of Mathematics, Andrica's conjecture
EXAMPLE
a(1) = floor(1/(sqrt(3) - sqrt(2))) = floor(1/(1.73-1.41)) = floor(1/0.32) = floor(3.15) = 3.
a(2) = floor(1/(sqrt(5) - sqrt(3))) = floor(1/(2.236-1.732)) = floor(1/0.504) = floor(1.98) = 1.
PROG
(PARI) a(n)=1\(sqrt(prime(n+1))-sqrt(prime(n))) \\ M. F. Hasler, Dec 31 2014
(Haskell)
a252477 n = a252477_list !! (n-1)
a252477_list = map (floor . recip) $ zipWith (-) (tail rs) rs
where rs = map (sqrt . fromIntegral) a000040_list
-- Reinhard Zumkeller, Jan 04 2015
CROSSREFS
Sequence in context: A353375 A056595 A160097 * A029351 A178638 A340786
KEYWORD
nonn
AUTHOR
M. F. Hasler, Dec 31 2014
STATUS
approved