login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089723
a(1)=1; for n>1, a(n) gives number of ways to write n as n = x^y, 2 <= x, 1 <= y.
44
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
This function depends only on the prime signature of n. - Franklin T. Adams-Watters, Mar 10 2006
a(n) is the number of perfect divisors of n. Perfect divisor of n is divisor d such that d^k = n for some k >= 1. a(n) > 1 for perfect powers n = A001597(m) for m > 2. - Jaroslav Krizek, Jan 23 2010
Also the number of uniform perfect integer partitions of n - 1. An integer partition of n is uniform if all parts appear with the same multiplicity, and perfect if every nonnegative integer up to n is the sum of a unique submultiset. The Heinz numbers of these partitions are given by A326037. The a(16) = 3 partitions are: (8,4,2,1), (4,4,4,1,1,1), (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1). - Gus Wiseman, Jun 07 2019
The record values occur at 1 and at 2^A002182(n) for n > 1. - Amiram Eldar, Nov 06 2020
LINKS
Solomon W. Golomb, A new arithmetic function of combinatorial significance, J. Number Theory, Vol. 5, No. 3 (1973), pp. 218-223. 1973JNT.....5..218G
Jan Mycielski, Sur les représentations des nombres naturels par des puissances à base et exposant naturels, Colloquium Mathematicum, Vol. 2 (1951), pp. 254-260. See gamma(n).
FORMULA
If n = Product p_i^e_i, a(n) = d(gcd(<e_i>)). - Franklin T. Adams-Watters, Mar 10 2006
Sum_{n=1..m} a(n) = A255165(m) + 1. - Richard R. Forberg, Feb 16 2015
Sum_{n>=2} a(n)/n^s = Sum_{n>=2} 1/(n^s-1) = Sum_{k>=1} (zeta(s*k)-1) for all real s with Re(s) > 1 (Golomb, 1973). - Amiram Eldar, Nov 06 2020
For n > 1, a(n) = Sum_{i=1..floor(n/2)} floor(n^(1/i))-floor((n-1)^(1/i)). - Wesley Ivan Hurt, Dec 08 2020
Sum_{n>=1} (a(n)-1)/n = 1 (Mycielski, 1951). - Amiram Eldar, Jul 15 2021
EXAMPLE
144 = 2^4 * 3^2, gcd(4,2) = 2, d(2) = 2, so a(144) = 2. The representations are 144^1 and 12^2.
MAPLE
with(numtheory):
A089723 := proc(n) local t1, t2, g, j;
if n=1 then 1 else
t1:=ifactors(n)[2]; t2:=nops(t1); g := t1[1][2];
for j from 2 to t2 do g:=gcd(g, t1[j][2]); od:
tau(g); fi; end;
[seq(A089723(n), n=1..100)]; # N. J. A. Sloane, Nov 10 2016
MATHEMATICA
Table[DivisorSigma[0, GCD @@ FactorInteger[n][[All, 2]]], {n, 100}] (* Gus Wiseman, Jun 12 2017 *)
PROG
(PARI) a(n) = if (n==1, 1, numdiv(gcd(factor(n)[, 2]))); \\ Michel Marcus, Jun 13 2017
(Python)
from math import gcd
from sympy import factorint, divisor_sigma
def a(n):
if n == 1: return 1
e = list(factorint(n).values())
g = e[0]
for ei in e[1:]: g = gcd(g, ei)
return divisor_sigma(g, 0)
print([a(n) for n in range(1, 105)]) # Michael S. Branicky, Jul 15 2021
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Jan 07 2004
STATUS
approved