login
A276024
Number of positive subset sums of integer partitions of n.
112
1, 3, 7, 14, 27, 47, 81, 130, 210, 319, 492, 718, 1063, 1512, 2178, 3012, 4237, 5765, 7930, 10613, 14364, 18936, 25259, 32938, 43302, 55862, 72694, 92797, 119499, 151468, 193052, 242748, 307135, 383315, 481301, 597252, 744199, 918030, 1137607, 1395101, 1718237, 2098096, 2569047, 3121825, 3805722
OFFSET
1,2
COMMENTS
For a multiset p of positive integers summing to n, a pair (t,p) is defined to be a positive subset sum if there exists a nonempty submultiset of p summing to t. Positive integers with positive subset sums form a multiorder. This sequence is dominated by A122768 (submultisets of integer partitions of n).
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..150
Konstantinos Koiliaris and Chao Xu, A Faster Pseudopolynomial Time Algorithm for Subset Sum, arXiv:1507.02318 [cs.DS], 2015-2016.
EXAMPLE
The a(4)=14 positive subset sums are: {(4,4), (1,31), (3,31), (4,31), (2,22), (4,22), (1,211), (2,211), (3,211), (4,211), (1,1111), (2,1111), (3,1111), (4,1111)}.
MATHEMATICA
sums[ptn_?OrderedQ]:=sums[ptn]=If[Length[ptn]===1, ptn, Module[{pri, sms},
pri=Union[Table[Delete[ptn, i], {i, Length[ptn]}]];
sms=Join[sums[#], sums[#]+Total[ptn]-Total[#]]&/@pri;
Union@@sms
]];
Table[Total[Length[sums[Sort[#]]]&/@IntegerPartitions[n]], {n, 1, 25}]
(* Second program: *)
b[n_, i_, s_] := b[n, i, s] = If[n == 0, Length[s], If[i < 1, 0, b[n, i - 1, s] + b[n - i, Min[n - i, i], {#, # + i}& /@ s // Flatten // Union]]];
a[n_] := b[n, n, {0}] - PartitionsP[n];
Array[a, 45] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz in A304792 *)
PROG
(Python)
# uses A304792_T
from sympy import npartitions
def A276024(n): return A304792_T(n, n, (0, ), 1) - npartitions(n) # Chai Wah Wu, Sep 25 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 16 2016
STATUS
approved